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1. INTRODUCTION

Spatial and temporal variability of the natural environmeiitsignherent and
unavoidable feature. Every element of the environment is deawed by its
own variability, and at the same time each element affese or more other
elements of the environment. In recent years, special attdr®been turned to
environmental variation as a phenomenon that comprises procesdieg l&a
given physical, chemical or biological conditions [1-4,7,27,28,38,39,86-101,201-
232,329-365]. One of the kinds of variability in the natural environrgthe
variability of the soil environment [9-13,20,35,44,118-141,272,286-321,338]. The
variability is related to the spatial and temporal vasiratf soil-forming factors
and to human activity. At the same time, the natural and titleragpogenic
components of the spatial and temporal variability of soil reve sufficiently
identified, and — so far — the least known. To the latter we skamsidgn, among
other things, excessive compaction of soil within the arablkr lagd beneath it,
resulting — as a side effect — from the application of agdtirallmachinery, which
has a significant effect on the hydro-physical, thermal anclaitions in soil [64,
105,170,253,289,388,403,416,442]. Likewise with the chemical properties, of so
including its reaction (pH) and cation-exchange capacity [399]. Qaesees of
the failure to consider the spatial variability of the soiliemment, and therefore
the conditions of growth and development of plants, may include irrationajetilla
(not adapted to the existing conditions), plant development below optimum
meaningful losses in crop yields, excessive costs ofifatibn and liming of
soil, long-term retention of chemical components in the soil arid iélease in
the form of gases or salts etc., as shown by studies conducted, athergy in
the USA, Sweden, Great Britain, Australia, and also in Poland £#613,8,117,
124,150, 154,156,171,207,229, 247, 286,393-398,411,418,426].

To acquire better and deeper knowledge and understanding of the temporal
and spatial variability of the physical, chemical and biolaigieatures of the soll
environment, we should determine the causes that induce a gisahility. The
primary causes of the natural variability may be sought in ¢eengrphological
form of the terrain (mountains, uplands, flat lands, valleys, faghsdes, detrital
fans, dunes, etc.), among the soil-formation factors, i.e. the clirhgtecological
or biological factors and their interactions, and in théedéhces in the lithology
of the parent rock from which he soil was formed. The interitgrosion,
sedimentation and weathering processes may also affect the atmpdrspatial
variation of soil properties [222,311,355-360].



It should be emphasized that the study of the spatial variabilitye physical
and chemical properties of soil provides the very foundationspfecision
agriculture that is now being promoted and implemented in the most
economically developed countries [212,246,251,444].

Types of soils (including their genesis and primary fea}uaes documented
on the national, regional or administrative unit scale by meassil maps with
various degrees of generalization [21,83-85,186,252,362,365,384,419], and —
though to a lesser extent — with the help of data banks [113,131,172,381,382
452]. These provide a basis for the formulation of conclusions mtngethe
greater or lesser variability of soils within a given af@9,214,222,392-
399,416-419,446]. The variability of soil properties within an lardield, even
though it exists [11,12,18,19,392], is often underestimated not onlarinefs,
but also by science. As a rule, the soil in a field is ctmred to be homogeneous,
which permits the study of its physical and chemical paramietérs restricted to
a single measurement point, and at the same time sugjgesisification of all
the applied tillage and other agricultural measures. Tih & approach causes
that in the field of studies on the spatial variability of soil properties, coedso
far in Poland, there have been no significant research publicalitwes least
known is the spatial variability of the properties of soilismvment in the sense
of mathematical-physical description and, moreover, the natural and
anthropogenic components of the spatial variability of soilsnatesufficiently
distinguished [166,282,400,425].

Among the features of soil we can distinguish those relgtis&lble (little
changing with time) and those of a more dynamic character whantgehwith
the occurrence of certain external factors (solil tillaggeorelogical conditions).
Relatively stable features of soil include its texture amderal composition;
examples of those variables in time are the soil pH or orgaatter content; an
example of a feature with strong dynamics is the soil moisture content.

1.1. Objective

The objective of this work was to investigate and desdtilge spatial and
temporal variability of selected physical and chemical pt@serof soil,
determination of the extent of the variability and its sigaiice in the soll
environment using geostatistical methods and time series analysis.



2. GEOSTATISTICAL METHODS
2.1.Introduction

The processes of mass and energy exchange taking place amesditnamic
processes. This is affected primarily by the solil itself dispersive and multi-
phase medium — as well as by plants and the meteorologicalicoadifctual
soil objects studied under natural conditions are conveniestiyed as systems
connected to the environment that can be described by means dilesuita
functions of time or as systems being functions of time andasmatbrdinates.
With the physical structure of the systems studied not kulgwn (usually), their
responses and contacts with the environment (inputs, outputs) caalpeed in
terms of static random processes, or treated as a form ofelatemship of
random fields [36-75,127-137,145-185,199,236-285,404]. Statistical methods
extensively used for the description of soil objects pre-asshat observations
are independent from one another, which hinders their accurstaption and
analysis. In environmental studies we deal with observationswictheir very
nature, are dependent on one another. The dependence is interesiiiy(&®m
the cognitive point of view) [17-22,142,144,204,213,288,319,364,368,369-
384,389,405-457]. In such a case, the chosen methods of random fielsisanaly
which, among other things, constitute the foundations for the mathamatic
apparatus of geostatistics, have a fundamental importanc¢hdoistudy of
variation of soil parameters. As we are aware, our knowledga phenomenon
or on the features studied with respect to a medium is fragmyeas it relates to
areas or, rather, points that have been sampled [9,24-85,322-379]. What we do not
know is what actually happens in between the measuremens.pbirg need to
acquire knowledge on those areas resulted in the emergeaceedf branch of
science — geostatistics.

Most of the features of the natural environment show contintitg study of
the physical properties of soil can be conducted with the helplasfical
statistics, using for the purpose the distribution function dma relevant
statistical moments, or with the help of the autocorrelatimttion on which
geostatistics is based. However, when we use classicatistatwe leave out
information concerning the space from which data have beentedleand the
data is irretrievably lost. On the other hand, basing on clastatidtics we can
solve the problem of sample population required for the determinatiargiven
feature with specific accuracy. Geostatistics, which bagesbservations that are
similar within a certain proximity, indicates that they hawe be mutually



correlated [315,345]. It represents a methodology that permits piialsor
temporal analysis of correlated data. Its basic tool isogeaim analysis which
involves the study of the variogram function of a specificalde physical value

or of a soil property under study. The variogram function, withsjiecific
parameters (nugget value, threshold and correlation range), prigsebehaviour

of the variable under study, called the “regionalized varialjl€3,136,137,225,

426], and thus permits the formulation of conclusions concerning #nat are

not represented by any measurement data [46, 53,57,62,63,70,126,159,179,190,
205, 214,377].

The concept of mathematical description of natural structir@sacterized by
geometric heterogeneity of linearity or surface maydrelacted with the help of
the fractal theory [6,8,10,14-16,346-352]. The fundamental concepsithdory
is the concept of the fractal dimensibn[29,42,43,161,167,176,220,221] which
expresses the effective geometric dimension of linearitfasairor volume of a
structure under study. According to the fractal theories, thee\ad D is a global
value and therefore characterizes the whole object studied [275-278,291-297, 383,
396]. The value may assume values within the range ©fDL< 2 for linear
sections and Z D < 3 for surfaces, and can be interpreted in terms of spatial
organisation of the feature or process under study, i.e. it provifbemation on
how far the feature/process is determined or has a random character.

Comprehensive study of the dynamics and correlation of many physic
properties of soil and the close-to-ground layer of atmosphere camisimsw
possible thanks to the existence of suitable methods of meaireavailability
of automatic data acquisition and analysis systems, and theatolapof
geostatistical methods and the fractal theory to the tempodakpatial analysis
of data variability.

2.2. Regionalized Variable

A basic concept in geostatistics is the regionalized variaitroduced by G.
Matheron [225]. The variable, distributed in space, forms ainedadom field
and is used for the description of phenomena occurring within afispeone.
The duality of the regionalized variable is manifest in dgpects — deterministic
(structured) and random (erratic) after Pannatier [280,281]:

“- The structured aspect is related to the overall distdhubf the natural
phenomenon,

- The erratic aspect is related to the local behavior of the ngturabmenon.



The formulation of a natural phenomenon must take this doubletaspec
randomness and structure into account. A consistent and operationalation
is the probabilistic representation provided by Random Functions.

A Random Function is a set of Random Variabl&){ | locationx belongs to
the area investigated} whose dependence on each other is expdmjifisome
probabilistic mechanism. It expresses the random and struchspeett of a
natural phenomenon in the following way :

- Locally, the point value(x) is considered as a Random Variable.

- This point valuez(x) is also a Random Function in the sense that for each
pair of pointsg andx; +h, the corresponding Random Variabkx) andZ(x; +h)
are not independent but are related by a correlation expressingpétial
structure of the phenomenon.”

2.3.Semivariogram

As has been mentioned earlier, in studies on the soil envirdrmeedeal with
observations that are mutually correlated [2,47,48,60,61,66,126,129,138,140].
Statistical methods assume that observations are independi@noiie another,
which hinders the accurate description and analysis. We #ratvour knowledge
on the processes studies is fragmentary as it relat@®as, or rather to points
that have been observed. We do not know what happens within the areas in
between the observations [70,90,94,96-120,248-268,315,325,387,436-450].
Acquisition of knowledge about those areas is in the focus of interest of numerous
branches of science, including agrophysics [392-400,419]. The probability,
confirmed by numerous observations, that next to a point withcifispalue of
a certain variable there are points with similar valddbat variable indicate that
the values must be mutually correlated. The basis for dlweilation of data so
correlated is the method of variogram function analysis, and spefically a
half of the expected value of differences of the va{@ of the variable in point
x and valueZ(x+h) in a point removed by the vecttx The semivariogram
presents therefore the spatial or temporal behaviour ofem gariable which is
also called the “regionalized” variable. The variable lia random aspect which
accounts for local irregularities, and its structural asyhich reflects the overall
tendency or trend of the phenomenon (trend) [122]. Analysis of swahiable
consists in the identification of the structure of variahilifthree stages can be
identified in the analysis: preliminary examination of colldctdata and
evaluation of basic statistics, calculation of empirical ogram of the
regionalized variable under analysis, and fitting a matheatatimdel to the
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course of the empirical variogram. This requires the knowesfgthe first two
statistical moments of the random functions ascribed to a givenomenon: the
first moment (the mean) [281],

E[Z(x)]=m(x) (1)
and the second (variance, covariance, semivariogram — semivariance)
var{z (x)} = E{lz(x) - m(x)J}. )

If the random variables of(x;), Z(x,) have variance, they also have
covariance which is a function of positign %,

Cx,.x,) = E{[z(x,) - mlx, )]z (x,) - m{x, )} = E{z(x )z (x, )} -m(x,) an(x,) (3)

Semivariogramyx;,X,) is defined as a half of the variance from the difference
of random variables4(x;)— Z(x,)} [281,424,425]:

Hxux)=JVarz(x) - Z(c )} @

It is also required that the process under study be stationaryddes not
change its properties with a change in the beginning of the tehqgrospatial
scale. In the stationarity condition is met, the random fun&fghis defined as a
stationary function of the second order. Moreover, it is expebid188, 189,
281]:

- the expected value exists and does not depend on the position of

E[z(x)] = m, O (5)

- for each pair of random variableZ(X), Z(x+h)} there exists covariance
dependent only on the separation vebtor

c(h) = Efz(x+h) z(x)}-nr, Ox (6)

- the stationarity of covariance implicates the stationaotyvariance and
semivariogram

var{z(x} = E{z(x)-m]*}=c(0), DOx )
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It can be shown that there is a correlation between covariamtetha
semivariogram [281]:

2C(n) = 26{z(x + hiz ()} - 2m? = [Efz(x+h)2}-m?|+ [Efz (07} - m?]
Z

~[Efz(c+ 7} - 26fz(x+ N z(x) + ElZ (4]
2C(h) = 2¢(0)- 2y(h)
c(h)=c(0)-p(h)

(8)

- for all the values of vectdr the difference Z(x+h) — Z(X)} has finite variance
and does not depend gn

y(h) = %Var{z(x +h)-2z(x)} = % lzix+n)-z(x2,  ox. (9

When the value of vectdrequals zero, the value of semivariance is also equal
to zero. The semivariogram is symmetrical with relatioh: to

Uh)=4-h). (10)

The experimental semivariograyh) for the distancé is calculated from the
equation [124,191,267,281,323,380, 402,424]:

)= 5y Sl )=+ an

where: N(h) is the number of pairs of points distant for each otheh.byhe
equation illustrates the differentiation of deviations of thkeie of a given feature
or physical valuez from the equation of trend with relation to the distance
between the measurement points. Three characteristic parmmeter
distinguished for the semivariogram: the nugget effect, ineshold, and the
range.

If the semivariogram is an increasing function beginning not fzeno but
from a certain value, the value is called the nugget effecexpresses the
variability of the physical value under study with a scale llemahan the
sampling interval (it can also result from low accuracy @asurement). The
value, reached by the semivariogram function, from which no fuiticezase of
the function is observed, (approximately equal to the samplanea is called



12

the threshold or sill, while the interval from zero to thenpoihere the
semivariogram reaches 95% of the constant value is dditedange. The last
parameter expresses the greatest distance at whichalines\samples are still
correlated.

To semvariograms determined empirically, the following mathiealat
models are fitted [91, 280,281]:
- The linear isotropic model describes a straight line veaimg Note that there is
no sill in this model; the rangd, is defined arbitrarily to be the distance interval
for the last lag class in the variogram. The formula used is [109]:

yh)=c, + [h(%b H (12)

- The spherical isotropic model is a modified quadratic function for whiabnae: s
distance A,, pairs of points will no longer be autocorrelated and the
semivariogram reaches an asymptote. The formula used for this model is:

C,+C 1.5M - o.{ﬂjs <A
y(h)= Ay Ay . (13)

C,+C h> A,
- The exponential isotropic model is similar to the spheiic#hat it approaches
the sill gradually, but different from the spherical in the rat which the sill is
approached and in the fact that the model and the sill nevallgatonverge.
The formula used for this model is:
_Inl

yh)=c,+ci-e » >0 (14)

- The Gaussian or hyperbolic isotropic model is similar éoekponential model
but assumes a gradual rise for the y-intercept. The formula usdiisfarddel is:

LR

ylh)=c,+C1- e % >0 (15)

where: y(h) semivariance for internal distance cldgsh — lag interval,C, —
nugget variance: 0, C — structural variance Cy, Ay — range parameter. In the
case of linear model there is no effective rafgeis set initially to the separation
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distance lf) for last lag class graphed in the variogram. In the case of the gppheric
model the effective rangd = A, In the case of the exponential model the
effective rangeA = 3A, which is the distance at which the sill ¢ Cy) is within
5% of the asymptote. In the case of the Gaussian model, tlotiveffeangeA =
3%°A, which is the distance at which the siC ¢ Cy) is within 5% of the
asymptote.

When fitting a model to empirical semivariograms, the leqisaiees method is
most frequently used.

2.4. Trend

In the regionalized variable we can distinguish the random atierr
component -«(x), which covers local irregularities, and the structural compgonen
— m(x), which reflects the overall tendencies of the phenomenon (trefids)
components are closely related to each other through the decaampesitation
[71,122,424]:

z(x) = £(x) + m(x) (16)

Like above, analysis of such a variable consists in the igmsiidn of the
structure of variability through examination of the colldctata and evaluation
of the basic statistics, calculation of the empirical sanmgram of the
regionalized variable under consideration, and fitting a matheshatodel to the
course of the empirical semivariogram. It is also requicgdte process under
study to be stationary, i.e. not to change its properties with agehi the
beginning of a spatial or temporal scale. The existenceenfidrin a data set
causes a change in the properties of the feature togetheisedgte change. In
such a case fulfilling the stationarity condition requires theoxaof the trend —
m(x) from the data set [114]:

£(x) = z(x) - m(x). (17)
For a linear run of values the trend equations are as follows:
m(x) = a
m(x) = a, +a,x (18)

m(x) = a +a,x +a,x’
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When we have a surface trend withy coordinates, the trend equations are as
follows:

m(x,y) =2,
m(x, y) =ax+by+c (19)
m(x, y) = ax? + by? + cxy+ dx+ey+ f

where:a, ag, &, a, b, ¢, d, e, f — parameters.

After the elimination of the trend from the data set, thelt@st random or
erratic component should be characterized by the mean valus @by finite
variance.

The empirical semivariogram )(h) for the distancd is calculated from the
equation:

N(h

)= 5t > )20 (20)

where::N(h) is the number of pairs of points distanttbyThe equation illustrates
the differentiation of deviations of the values of a giveluigs or physical value
&x) from the trend equation depending on the distance between the meagurem
points.

2.5. Standardized semivariogram

Semivariance values calculated from the classigabt®on are sometimes so
scattered that it is difficult to them a semivaraog model. Better model fit can be

achieved through the standardization of the serag@m y, [281]:

y(h)

. (21)
0h=0 |]J-h

Vs =

In such a case we must additionally calculate tdnedard deviation of the random
variable at the origin of vecttr(o,_,) and the standard deviation of the value of the

random variable for a point distantivyo,, ).
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2.6. Cross-semivariogram

Regionalized variables are assigned to various physical pespeftthe soil
medium. The variables are usually correlated with one another,ld@ssar or
greater degree. Assuming that the condition of stationaritheofécond order is
met, and that the values of variablgsandz, have cross-covariance defined as
[123,193,230,407,434]:

Cyo(h) = E{Z,(x) &, (x+ h)} -mm, (22)

and

Cau(h)= B{Z,(X)Z, (x+ h)} -mm, (23)

and cross-semivariogram as:

V12 (h) = y21(h) = % E{[Zl (X + h) - Zl(x)] [ﬁzz (X + h) —Z, (X)]}’ Ox.  (24)

Whenm, andm, are the expected valu&$Z;(x)} and E{ Z,(X)} then, taking the
above relations we can write the cross-semivariogram as:

21, (h) =2y, 21(h) =2C,, (O) -Cp (h) —-Cy (h) (25)

The empirical cross-semivariogranmyh) for the distancé is calculated from
the equation:

folt)= i Sla)-ax )= o] oo

whereN(h) is the number of pairs of points with valueszty), zi(x+h)], [z(x),
z(xth)], distant byh. When calculating the cross-semivariogram, the number of
z and z, values need not be even. Like in the semivariogram, in tbesC
semivariogram three basic parameters are distinguishedutget, the sill, and
the correlation range. Also, mathematical functions are fitbéal empirically
determined cross-semivariograms.

The obtained mathematical functions of semivariograms ands-cros
semivariograms can be used for the spatial (temporal) analfysiutocorrelation
or for the visualization, through estimation, of the physicaluezaunder
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consideration in space with the kriging or cokriging methods3@01,127-129,
200,281].

2.7. Kriging

Estimation of values in places where no samples have been ¢akehe
conducted with the help of an estimation method called the krigiathod
[40,41,55,58,77,80,164,223,270,320,363,412-415,420-432]. The method yields
the best non-biased estimation of point or block values of tgmnaized
variable under considerati@{x). With this method we also obtain the minimum
variance in the process of estimation. Kriging variance vatlegend on the
situation of samples with reference to the location under estimatiothe weight
assigned to the samples, and on the parameters of the semivariogrdm mode

The estimator of kriging is a linear equation expressetd®yarmula [30-33,

424:

2°(x,) =X A, 2(x) (27)

where: N is the number of measurement$s) — value measured at poirt
Z*(X,) — estimated value at the point of estimatign}; — weights. Ifz(x) is the
realization of the random functid(x), the estimator of the random function can
be written as:

zD(xo):Z::)li 2(x). 28)

The weights assigned to samples are called the kriging ceeff. Their
values change with the changing sampling situation and withabmgdtanges
expressed by the variable under estimation. The weights assigsathpies as
selected so as to achieve the minimal mean-square erroeriidres called the
kriging varianceg? and can be calculated for every sampling situation and
estimation area configuration. The fundamental problem in thendetgion of
the random variable is the finding of the weightThe weights are determined
from a system of equations after inclusion of the conditioestimator non-bias
[269,424]:

E{z" (x,)-z(x,)}=0 (29)
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and its effectiveness:
o2(x,)=Vvar{z"(x,)-z(x, )} = min. (30)

After substituting the estimator of the weighted mean to ¥peaed value we
get:

ez (x)- 20} = £ Bzl ) ezl = a -m=0. )

As can be seen from the above equation, the expected value equals zero when:

> A, =1 (32)

while substituting to the variance the random variable estinwe can show that
[424]:

o(x,)= ZZ)I 2,Clx,x,)+c(0)- ZZ)I Cc(x.,x,)  (33)
or (through semivariance):

o (%)=~ XA, x ,)+ZZA Y% %,)- (34)

Minimization of variance can be achieved by means of the abgin
technique, wher8l equations of partial differentials are equal to zero [424]:

d{ai (x,)- 2uy. }

JA

= O, (35)

where: i is the Lagrangin factor. After the differentiation anduetion of the
equation we can arrive at the solution:

—22/1 X%, )+ 2%, %, ) - 21 =0. (36)

Including the condition for sum of kriging weights, we obtain theesgsof
equations:
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ZN:/‘jV(Xi’Xj)ﬂ“,Ll:y(xi,xo) i=1--N
j=1
JN
Z/‘i =1
i=1

Solving the above system of equations we determine the krigights —A..
The weights permit also for the determination of the estunegadom function
Z* and its variance from the formula:

G20 =1+ 3 A, ). (39)

(37)

2.8.Cokriging

Cokriging is a specific method for the analysis of randomddgidt consists in
the determination of covariance and reciprocal covarianceelisas/ the cross-
semivariogram function for specific soil parametets and Z,. The main
advantage of the method described is the possibility of indieecnstruction of
the spatial variability of soil features, the measurementhath is difficult and
expensive, through field analysis of other soil parametersere@sidetermine
with standard measuring equipment, or of improving the estimationebf the
variables under consideration on the basis of another variable.

Estimation of values at sites where no samples have been igkesm be
made with the help of the estimation method known as the cokrigitigooh The
mathematical basis for cokriging is the theorem on the lirdationship of the
unknown estimatoZ, (x,) expressed by the formula [265, 283, 407, 424]:

sz(xo)zi/‘ﬂzl()ﬁi)"'i/‘zj Zz(xzj)f (39)
i=1 j=1

where:A;; and A, are weights associated with andZ,. N; andN, are numbers of
neighbours of; andZ,included in the estimation at poirg. Cokriging weights
are determined from a system of equations with the inclusidmeofdndition of
estimator non-bias [407]:

E{z5(x,)-Z,(x, )} =0 (40)

and its effectiveness:
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a2(x,)=Va{zL(x,) - Z,(x, )} = min. (41)

After the substitution of the estimator of weighted meath¢oexpected value we
obtain:

E{ZZD(XO ) -7, (Xo )} = 2/] 1i E{Zl (Xli )} + ji;/‘ 2 E{Zz (X2ij )}_ E{Zz (Xo )}
= rnliz/‘li + mzz/‘zj - |

(42)

As can be seen from the above equation, the expected value equals zero when:

Nl N2
D> A; =0 and DA, =1 (43)
: =

i=1

After substitution of the estimator to the variance we obtain:

ai(%) = EZ7 ( p+ ElZE (x - 2620 (0, )2, () @4

Substituting to the variance the estimator of random functiercan show that
[411]:

( ) ZZ/‘ll/‘lkcll(Xll Xlk) ZZ/‘M/‘ZCH( )
+ZZ"21/111<C21(X21 Xik) ZZ"Z;Alezz(ij X2|) (45)

22" 1k021(xo’ Xlk) 22" 2l CZZ(XO’ X1 ) +C,, (O)
k I

Minimization of variance can be achieved according to the bagra
technique in whiciN; andN, of equations of partial differentials are equal zero
[407]:

0{ a5 (%) 2#22)'21}

JA,

=0, (46)
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and

o"{afk (x,)- Zylzk:A 1,(}

=0, 47
m 47

where: 4 i (b are Lagrangin factors. After the differentiation and reidnodf the
equation, and taking into account the condition for the sum ofgiogrweights,
we obtain the system of equations:

N, N,
Z/]chll(xﬁ , Xlk)+ Z/] 2jC12(X1k’ X5 )_:ul = CZl(Xo’ Xlk) k=1N,
= =1

N, N,

z/]ﬂcﬂ(xﬂ ’ Xli)+z/12ic22(x2j » Xa )_/uz = CZZ(XO’ le) =1 N,
= =1

Ny

> A;=0

=

N,
Z/]Zj =1
=1

(48)

Solving the above system we determine the cokriging weights Fhe
weights permit also the determination of the estimated randontidang* and
its variance from the formula [407]:

Ny N,
chk(xo) = sz(o)"',u_z/]liczl(xo’)(n )_Z/] 2jC22(X2j ’Xo)' (49)
= =

2.9. Fractal dimension

Temporal or spatial runs obtained in the course of agrophysicaur@aments
are manifested in the form of irregular shapes. Such irregul@haos) can be
treated in two ways: as a deviation from an ideal condition —classical
statistical approach, or secondly, as a disordered run bound withsizaty
inseparable features. It can be assumed that the study of such a disordeii#d run w
yield useful information not only on the run itself, but alsouttihe object from
which it originated. Irrespective of the scale of measergm runs of this type
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can be analyzed with the help of semivariograms. This statemsults directly

from the assumptions of geostatistics. Another useful tool that can be employed in
the analysis of irregularities is the fractal theory Wwhioy definition, deals with

just such objects [67,68,72,98,112,158,168,308,312-314,324,385,386].

Studies performed so far indicate that there are no diretitone for the
determination or estimation of the fractality of actual olsje§173-175,
208,209,303]. Therefore, such properties of objects are sought ctmat
incorporate in their structure the features of natural fractals, arésathat can be
related to the definition of fractals.

In recent years, fractal analysis has been used not onthidatescription of
the geometry of materials, but also for the study of spa#ahbility of the
properties of a porous medium, including — among other things — theeteftu
the medium, its electric conductivity, penetrometric resistasheesity, content of
different salts in soil, or the effect of the colloidalcfiian on soil erosion [5,
23,26]. The fractal dimension was determined through the slope ifdex o
semivariogram plotted in the logarithmic system of coordinates.

In this study, the fractal dimensioD was determined basing on the
semivariogram from the formula [43]:

H
D=2-2, (50)
where:H is the slope of the semivariogram line, plotted in the fdgaic system
of coordinates.

3. METHODS AND OBJECTS OF THE STUDY

Measurements of soil moisture and density were conducted with lihethe
the gravimetric method. Soil moisture was also measured Wwithhelp of a
moisture meter operating on the reflectometric principle ofsueng the
dielectric constant of a porous medium (TDR). Thermal propeofie®il were
determined through the application of the statistical-physiwadel of thermal
conductivity and of the empirical formulae for thermal capacity and diffys

3.1. Reflectometric method for soil moisture measurement

The principle of operation of the TDR meter is based on meamunt of the
propagation velocity of electromagnetic waves within the mediumrustdely
(soils) at steady transmission line parameters [216,217,218,342,343T4(EY]
propagation velocity is expressed by the ratio of the velocity lof ligvacuum to
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the square root of the dielectric constant of the medium studieddi€lectric
constant of a given soil depends primarily on the content of wateunit of sail
volume and can be described, with sufficient accuracy, with ra thider
polynomial.

In practice, soil moisture measurement with the TDR methaedaced to
measurement of the time necessary for electromagnetic tgapenetrate the
medium, from the moment of entering the medium (where the rifigction
occurs), along the needle probe to its end (where the wavedileicted for the
second time). With help of a certain set of equations, the measuedf wave
propagation is converted to the water content in a volumetric unit obithe s

The TDR meter [216,217,218,342,343,417] is made up of a microprocessor
controlled meter with a matrix graphic display, battery sugdpland a probe
connected to the meter. Probes of various lengths of stem m&d&/of2 cm in
outer diameter) are tipped with steel pins 10 cm long and with 1.§pewing.
The instrument measures moisture within water content rangeodf00% with
the accuracy of 2% and a resolution of 0.1%. The duration asingle
measurement is under 10 seconds.

3.2. Determination of thermal properties of soil

Under steady state conditions and in uniform and isotropic mediutrflivea
densityq (Wm™) is proportional to temperature gradiéfitoz (Km™) measured
along the direction of heat flow:

oT
= A—. 51
q 37 (51)

The proportionality coefficiend (W m™ K™) called thermal conductivity is a
characteristic of thermal conductivity of the given mediunmteBrination of the
thermal conductivity and its spatial distribution in the soitdsy difficult since it
is a porous medium. Therefore, the methods for determination of ¢heah
conductivity based on other and easily measured properties are useful.
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Fig. 1. Schematic diagram of the statistical model comsitvn, a) unit volume of soil, b) the system
of spheres that form overlapping layers, c) pdramnection of resistors in the layers and series
between layers.

In our study we used the statistical-physical model of soil thermal condyctivi
[390]. This model is based on the terms of heat resistance §Olam' and
Fourier's law), two laws of Kirchhoff and polynomial distribarii [88]. The
volumetric unit of soil in the model (Fig. 1a) consists of solidigas, water and
air, is treated as a system made up of the elementary aofiwures, in this
case spheres, that form overlapping layers (Fig. 1b).

It is assumed that connections between layers of the sphedethe layer
between neighbouring spheres will be represented by the sedalparallel
connections of thermal resistors, respectively (Fig. 1c). Cosgpaof resultant
resistance of the system, with consideration of all possibleigtwations of
particle connections together with the mean thermal resistahggven unit
volume of soil, allows the estimation of thermal conductivity dil
A (W m*K ~ 1) according to the equation [390]:

ar
A UZL: P(Xy; 5+ %4) (52)
=1 le/]l(T)rl +o 4 XA k(T)rk
where:u is the number of parallel connections of soil particles tdeasethermal
resistorsL is the number of all possible combinations of particle conftoura
X1, X2,..., X — the number of particles of individual particles of a soihwlitermal

k
conductivity A3, A, ,..., Ax and particle radiiry, r, ,..., Iy, Where inj =u,

i=1
j=1,2,...,L P(x;) — probability of occurrence of a given soil particle cgafation
calculated from the polynomial distribution:
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ut X £ %
P(xlj,...,xkj):i! ST (53)

1 Xy

L
The condition:ZP(X = xj)=1 must also be fulfilled. The probability of
j=1
selecting a given soil constituent (particfg)i = s, ¢, g in a single trial was
determined based on fundamental physical soil properties. In thef cag.,

and 1“g are the content of individual minerals and organic mattdy =1- @,
liquid — f. =6, and air -f; = ¢—6, in a unit of volumeg — soil porosity.

So far, investigations showed that to calculate soil theomatluctivity the
conductivities of main soil components can be used [390]. They adzgother
minerals, organic matter, water and air. Their values ofrthleconductivity and
relations to temperature are presented in Table

Table 1.Values and expressions for parameters used inlatifeg the thermal conductivity of soils
(Tin°C).

Sourcé Parameterd Expression, valu
(W m* K™
Ag, 9.103 - 0.028
2 Amis 2.93
2 Aoy 0.251
1 A 0.552 +2.340°T-1.110° T
1 Aas 0.0237 + 0.00006F

41.1162]; 2. [78],b thermal conductivity of: quartd,, other mineralsAm;
organic matter), water or solutiond,, air, A,.

Parameters of the model were defined earlier on the basmpifical data
[390,391].

The agreement between predicted and measured results wmamsidetl with a
mean square errosd) and relative maximum erron):

n

Z(fmi - fci )2
o, =\|>— " , (54)

where:f,,; is the measured valug, is the calculated valu&=n- 1 if n< 30 and
k=nn> 30,n— number of data.
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The relative maximum error was calculated using the following equation:

mi ci

mi

EI.OCP/O} . (55)

Also regression equations of the thermal conductivity and detation
coefficient R were developed.

Predicted thermal conductivity values were compared wittsuned data on
the Fairbanks sand, Healy clay, Felin silty loam, Fairbapéat and loam
[78,390,391]. Regression coefficients were close to unity, haweeamanent
factors in the equation were close to zero. Determination ciesiicof the linear
regression were high and ranged from 0.948 to 0.994. Mean square errors
o(W m* K™ and relative maximum erromg(%) ranged from 0.057 to 0.123
(W m™ K™ and from 12 to 38.3%. These data indicate good performance of the
model in predicting the thermal conductivity.

Volumetric heat capacit®, (MJ ni® K™) was calculated using empirical
formulae proposed by de Vries [78]:

C, = (20x, + 251x, + 419x,,)10° (56)

where:Xs , Xo , X (m3 m‘3) — are volumetric contributions of mineral and organic
components and water, respectively.
Thermal diffusivity awas calculated from the quotient of the thermal
conductivity and volumetric heat capacity:
A

v

4. TEMPORAL VARIATIONS IN THE AGRO-METEOROLOGICAL DATA

In this chapter we present some preliminary results for thaysis of
temporal variations of agro-meteorological data. The noveltpusf approach
consists in the utilization of the following modern methods:

*  Wavelet transform (WT)

» Empirical Mode Decomposition (EMD)

e Multitaper Method (MTM)
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4.1.The data

The analyzed data were recorded by the automatic agrostetien
manufactured by Eijkelkamp Company__(http://www.eijkelkamp.¢omiThe
station is shown in Fig. 2.

¥

Fig. 2. The automatic agro-meteostation of the type 16.98.

The following parameters are measured by the station: windl spekwind
direction, global radiation, air temperature, air humidity] seinperature and
precipitation. The wind data were not used in our analysis.rddiation sensor
operates in a measuring range of 305-2800 nm with accuracy of 2t&a@ifT
temperature and relative humidity sensor with radiation Idhi@easures
temperature between —40°C and +60°C with accuracy of +/- 0.2°Cidityym
between 0 to 100 % with accuracy better than 2%. The soil tatnpe sensor
operates in a measuring range of —40°C and +60°C, accuracy 00-BDAE and
0.2°C at —40°C till +60°C. The last one, the rain gauge of Wistant plastic,
aerodynamic design, and with a tipping bucket has a resolutiob.20imm
precipitation and a surface area of 507.cm
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The data covering the period of May-June 2003 are shown in Fig.3wdere
focus ourselves on the variation of soil temperature sinodliiences strongly
crop development and plant growth. It is well known that soil teatper
depends on both the soil surface energy balance and on the tpespeties of
the soil [37,79,89,160]. As it is seen in Fig. 3 the daily soipenature variations
follow closely the air temperature and solar radiation. Howetie bad weather
and heavy precipitations can destroy this synchrony and we obseeve
intermittent behavior in these parameters. Such an intenuit is the main
obstacle in using classical methods for the analysis of timat &f data. In
addition, seasonal variations in the data can not be extractiyl &hese are
perhaps more important than daily variations. Due to the abosenzave have
to resort to the afore-mentioned more advanced methods of data analysis.
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Fig. 3. The data set recorded by the agro-meteostatinngliay-June 2003.



28

4.2 Wavelet transform

Wavelet transform is a method that allows studying timeseaimultaneously
at time-scale or equivalently in time-frequency domaimegans that WT due to
its local nature is able to analyze properly any localizechtians in the data.
This aspect makes the WT very useful in the analysis ofineaml and non-
stationary time series. Most of the time or spatialeseencountered in soil
science belong to this category.

Until now, the WT has not been widely used in the analysidatd in soil
science. However, Lark with co-workers have shown in a sefipapers that the
WT should be considered as a standard tool in the analyg@siotis soil data. In
a paper [187] the authors have shown how the wavelet transforimecased to
analyze complex spatial variations of soil properties sampégilarly on
transects. The paper can be treated as an introduction of tgaetmil science.
In another paper [192] they have studied variation and covariatismall data
sets from soil survey. The data sets comprise measurememtsl aind the
contents of clay and calcium carbonate on a 3-km transect tnaCEngland. In
that paper they have used a variant of the WT, called the maximal ovedegidalis
wavelet transform (MODWT) developed in statistical comrtyunElectrical
conductivity of soil was analyzed using wavelets in a thifgep§l94]. Recently
Lark’'s group has widely studied an intermittent variation nifous oxide
emissions from soils using wavelets [195,196,197,454]. In their rosht [198]
the authors have successfully extended wavelet analysi® tdimensions. Every
soil scientist seriously interested in using wavelets foramaysis of soil data
should consult their paper.

First we study the temporal variations in the data using Continlaelet
Transform (CWT).

One of the most popular approaches in practice is the CWT bastt on
Morlet mother wavelet [374]. The popularity of this approach &ifnem the
conceptual similarities to the Fourier orthogonal analyzing funcéths

The Morlet wavelet (Fig. 4) is defined as follows:

‘//o (,7) — n.—1/4ei%ne_,]2/2, (58)

whereayis dimensionless frequency arpds dimensionless time. To achieve the
optimal localization in time and frequency usually=6 is usually adopted. This
choice also satisfies the admissibility condition. The Gaussiavel@e
exp(+7/2) localizes the wavelet in time. Fourier frequefignd wavelet scals
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are not directly related. One has to rescale the resulaeélet analysis with a
factor depending on the mother wavelet. For the Morlet wahketzonversion
formula has the form:

478
ay+2+af

For ap=6, sf7is approximately one.

1 f = (59)
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Fig. 4. The Morlet wavelet fory=6. Real part (solid line), imaginary part (dashied).

The CWT of time series x{, n=1,...,N sampled uniformly with steqt is
defined as the convolution of with the scaled and normalized wavelet and is

given by:

W (9= [T 3,4 =) I (60
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Since the above equation is a convolution its computation can bemtfjci
implemented in the frequency domain by using the FFT algorithm. Thésda®i
omitted here but they can be found in the cited literature [195,19857The

wavelet power is defined e#é/nx (s)‘z. The complex argument ofV.* (s) can be

interpreted as the local phase.

The CWT has edge artifacts because the Morlet wavelebticompletely
localized in time. These are taken into account by introgut¢he Cone of
Influence (COIl). The COI is the area in which the waveletgrosaused by a
discontinuity at the edge dropse® of the value at the edge.

The cross wavelet transform (XWT) of two time sexgandy, is defined as:

WX =WXWY x| (61)

where: * denotes complex conjugation. Next, we define the gvasslet power

as MXY

high common power. The complex argument Wd{ ) can be interpreted as the
local relative phase betwegmnandy,time series.

We are often interested in the phase relationship between rveo sieries.
Following Torrence and Webster [375] we define the waveletreabe ofx,and
Y, time series as:

. Cross wavelet power reveals areas in the time-frequenog plith

_ S(s™w ()
Rn(s) - ~ 2 ~ 2 1
S(s™W (9 ) TB(s™ W (9) )

where:Sis a smoothing operator. The wavelet coherence can be interaet
localized correlation coefficient in the time-frequency plame smoothing
operatorShas a form:

SW) = Sscare(Sime Wi (), (63)

where:S;.;edenotes smoothing along the wavelet scale axisSgrdmoothing in
time. A suitable smoothing operator is given by Torrence and Webster. [375]

(62)

s (64)

SadW)|. = (W, (9) Cc,e™)
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Sime(W)[, = (W, () Cc, M (069))| ,, (65)

where:c; andc, are normalization factors ard is the boxcar function. The value
of 0.6 is the optimal for the Morlet wavelet.
The wavelet coherence phase difference is given by the following eqpuati

Im(S(s™W,™ (5)))
Re(S(s™W,(9)))

@.(s) = tan‘l( (66)

The statistical significance of wavelet power can baregéd by comparison
with the power spectrum of a first order autoregressive AR(tbcess. This
approach is based on the findings that many geophysical tires séow red
noise characteristics. The power spectrum of an AR(1) process is given by

1-a?

L
—i2rk‘2

K = ‘ (67)
1-ae

where:k is the Fourier frequency index angl autocorrelation at lag equal to 1.
Torrence and Compo [374] showed that for a given background spe@jrtine
corresponding wavelet power at each timand scales is distributed as:

()| 1,
D(—M > ‘ <p)==Rx,;(p), (68)
Oy 2

where: v is equal to 1 for real and 2 for complex wavelgtds the desired
significance p = 0.05 for the 95 % confidence interval).

Similarly, Torrence and Compo [374] have developed a formula fgoitie
distribution of the cross wavelet power to two time seriel taickground power

spectraP” and R’ . Itis expressed here as a:

b (Mn (W, (s)‘ <p)= ZUT(p) ,—ka - (69)

XY

where: Z,(p) is the confidence level associated with the probabilitpr the
resulting probability density function defined as a square rothefproduct of
two chi-square distributions. For= 2, Z,(95%) = 3.999.
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The wavelet and cross-wavelet transform were computed witlpabkage
available at http://www.pol.ac.uk/home/research/waveletcabefe

4.3.The results of wavelet transform

Fig. 5 show the CWT of the air temperature. The daily componahtasly
seen. However, the seasonal component with a period greater thhnut&8or
hours between 200 and 800 in the figure is much stronger. One caotidsothe
weak high-frequency component with the period of 8 hours. Fig. 6 show the CWT
of the topsoil temperature. The similarities with the fmes figure are obvious.
One can note the reduced dynamics in the topsoil temperatuatiorssi Both
daily and seasonal components are of the comparable strengthfrétigency
variations are now shifted to the band around 12 hours. Fig. 7 shows\ihe{C
the solar radiation. Obviously, the daily component is strongestltieeseasonal
component is the much weaker. One can also see a few littlecpbes power
along time in the band for 12 hours. In general, the daily courseeaiopsoil
temperature follows closely the solar radiation for\aegitime. Fig. 8 show the
CWT of the air humidity. The power variations with time forlg@iomponents
are visible. Also long-term features are noticeable. Thescwavelet transform of
the solar radiation and air temperature is shown in Fig. 9. Thei@f#icance
level is shown as a thick contour. The arrows indicate theepteationship
between both time series. The time series are in-phaserdovsapointing right,
anti-phase pointing left. As it is seen the air temperatushiited in phase about
45 as compared to the solar radiation. In addition, this shift is rabtigereater
for seasonal components. Fig. 10 show the cross wavelet transfaha sblar
radiation and topsoil temperature. Accordingly, the phase shift is now @®ou

The above results agree qualitatively with the theotyeat transfer, since the
air and soil respond with the delay to driving force, i.e., thar gadiation. Fig.
11 show the cross wavelet transform of the solar radiation andugiidity.
Comparing figures 9 and 11 one can conclude that the air teomeecnd
humidity are in anti-phase. Moreover, the air humidity advanbes sblar
radiation. According to the adopted convention, the phase shift is aBbeit
Finally, Fig. 12 show the squared wavelet coherence betweepl#readiation
and air temperature. Again, the 5% significance level is sheventhick contour.
The coherence and constant phase relationship for daily and seasapahents
are significant. We conclude that the cross wavelet amalgad wavelet
coherence are powerful methods for testing causal relationshipdretwo time
series.
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4.4 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) has been pioneered by Huaad) et
[148,149] for analysis of nonlinear and non-stationary timeseli has gained a
lot of popularity in data analysis and is widely considered as agorm
breakthrough in applied mathematics in the 20th century.

This technique adaptively decomposes the given oscillatorylsignaa few
AM-FM components which are referred to lasrinsic Mode FunctiongIMFs).
IMFs are calculated in an iterative procedure cadiftthg processAs a rule, the
last IMF represents long-term trend in the data. It is wortiote that this is local
and fully data-driven technique. The EMD is in fact a type of adaptavelet
decomposition whose subbands are built up in accordance with the frgquen
content of the signal.

The original signal can be reconstructed by summing up alkINHewever,
we are often more interested in partial reconstructions hier atords, we want to
analyze various components of the given signal separately.xaonpée, one
usually needs to detrend the data or to perform some kintiepiniy. One should
note that this can be realized completely easily with the IMBEmation of the
trend in data or band-pass filtering is equivalent to summinguitpbly chosen
the mutually orthogonal pairs of IMFs. The above approach is adaptet:
present analysis of soil temperature and humidity data. Thefrageency
spectrum, a post-processing aspect of EMD, which is estimait Hilbert
transform, will not be considered here.

The EMD assumes that IMFs should:

(1) have the same number of zero crossings and extrema,

(2) be symmetric with respect to the local mean

Given a signak(t), the EMD algorithm works as follows:

(1) find all the extrema ok(t);

(2) connect all the local maxima by a cubic spline as an upper envelope
enall); repeat the procedure for the local minima to obtain the lower
envelopesnin(t);

(3) compute the averaga(t) = (Enin(t) +€malt))/2;

(4) extract the detail(t) = x(t) - m(t);

(5) iterate on the residuai(t).

In practice, the above main loop is refined by a sifting psycas inner loop
that iterates step (1) to (4) upon the detail sigifgl until this latter can be
considered as zero-mean according to some stopping criterion. @ieces t
achieved, the detall is considered as the effective IMF,dtresponding residual
is computed and only then algorithm goes to step (5).
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In summary, the original signa(t) is first decomposed through the main loop
as

X(t) =d, (t) + m(t), (70)
and the first residuaiy(t) is itself decomposed as
my (t) = d, (1) + my(t), (71)
so that

X(t) = dy(t) +m(t)

= dy(t) +d,(0) + m, (1)
= ... (72)

idk(t) +my (t)

Although the EMD principle is very simple and appealing and its
implementation easy, the exact mathematical theory of thathad is not
available yet. Due to the lack of analytical formulas itdfgremance analysis is
difficult. In spite of that, the EMD is widely used in differditanches of science
as a one of the best methods for the analysis of non-stationary tie®e se

The reconstruction of signal components is done in a processsadl vi
inspection and selection of the appropriate IMFs. Although thetgmiecriterion
is a bit arbitrary, one can readily identify particular IM@Sich correspond to a
given sub-band. Finally, the signal components are restored by sgmmitine
carefully selected IMFs. Let us emphasize that the abayesiraple procedure is
equivalent to the adaptive sub-band filtering.

We illustrate how the EMD works using the same data we &iaalyzed with
the CWT.

4.5.The results of EMD

Fig. 13 show the EMD of the air temperature. As can be seen, the origieal ti
series is decomposed into eight IMFs. The reconstructed componegitis, hi
frequency variations (C1), periodic (daily) variations (sum ot&24) and long-
term (seasonal) variations (sum of C5 to C8) are shown in Fig.hk4seasonal
component is superimposed on the original time series, wihderdmaining
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components are shown below in the figure. This same convention isrsed i
subsequent figures. Note that the mean value of theseamponents is relative
and equal to zero. Fig. 15 show the EMD of the topsoil temperdtutieis case
the high-frequency variations are not present. Of courseistliaused by greater
thermal inertia of the soil as compared to the air. Fig.sthéw the two
reconstructed components. The daily component comprises of C1 aiFE2
while the seasonal component the remaining IMFs (sum of C3 toFEf)18
shows the EMD of the air humidity. In this case, one can obseadiyrean
increase of the air humidity caused by the precipitation. Fight® ¢he three
reconstructed components of the air humidity. The high-frequency contpone
comprises of C1 IMF, the daily component (sum of C2 to C4), thesalasum

of C5 to C8). Note that the daily component is additionally ethifo the level —

50 % for presentation clarity. Finally, the EMD of the soltiation is shown in
Fig. 20 and the reconstructed components in Fig. 21. The visible/s/éiehe
course of solar radiation are caused by the weather breakingsini@mmittent
behavior is instantly reflected in other measured quantitiess EMD of the solar
radiation contains of nine IMFs. The high-frequency component coespoisC1
IMF, the daily component (sum of C2 to C4), the seasonal component (<Tfn of
to C9). The daily component is additionally shifted to the letd& kW/nf for
presentation clarity.

The heat transfer regime at the air-soil interface eastidied with details by
using the Empirical Mode Decomposition as demonstrated above. Two mai
factors play a major role here - solar radiation and intermittenttyei weather.

The dynamics of the air and topsoil temperature variatiomdeaepresented
on the so-called phase-space plots. Fig. 17 shows such a ptoefdeily and
seasonal reconstructed components. As can be seen the dynarucalgiiboth
variatiations is rather complex.

It is worth to note that such representation is very usefufjualitative
assessment of the heat transfer regime at the air-soibiceerf
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Fig. 15.The Empirical Mode Decomposition of the topsoil parature.
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f the topsoipeFature.
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Dynamics of the daily components
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4.6.The Multitaper Method

Usually, the power spectrum of a time series is estimagsethe squared
absolute value of its Fourier Transform. This simple approximasiaalled the
periodogram. To reduce leakage in the spectral estimation, asénes is often
windowed before applying the Fourier Transform. Although windowinlyices
the bias, it does not reduce the variance of the spectialags. The multitaper
method [290,371] is designed to reduce spectral leakage. Firslathe are
windowed with different, orthogonal tapers, and next spectra fdnealiapers are
averaged. The resulting multitaper spectral estimatorsuperior to the
periodogram in terms of reduced bias and variance. There aresgoitaities
with the Welch method of modified periodogram.

The multitaper spectrum estimator is given by:

S(f)=%kz_aksk(f> (73)

with
2

S(f)= (74)

%Wk(n)x(n)e_mn

where: ai is the corresponding weighting factdtjs the data length ang(n) is
the k-th data taper used for the spectral estinga®, which is also called-th

eigenspectrum. The tapers are orthonormal, E.n,wk (Mw; (n) =0 for j=k

and equal to 1 fof = k. The discrete prolate spheroidal sequences (dpss) or

Slepian sequences are usually chosen as tapers becausé gbdldeleakage
properties. The number of tapdrss always chosen to be less tH¥W,where
W is expressed in units of normalized frequency, Qes;W < % The Slepian
sequences maximize the spectral concentration of the window lots within
[_Wv\/\]'

The multitaper cross spectral transform for time segieandy, is given as

() =L X FX (DR (75)
k=0
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where:

FX(F) = w (mx(ne 2, (76)
n=0

and similarly fory,. The multitaper coherence is defined here as:

" ‘va‘
MERRNN g
and phase difference is given by:
m CXY
@ =arctan e((C XY; , (78)

We have used the improved matlab scripts for the computation of koth th
multitaper spectrum and coherence. These scripts were reelivay Peter
Huybers and are available in the Matlab Central archive drisrhome page
http://web.mit.edu/~phuybers/www/Mfiles/index.html.

It is worthwhile to note that these scripts use a fast appatikimto compute
the 95% confidence limits for a chi-squared distribution and corsptite
equivalent degrees of freedom as given by Percival andewal®93, p256 and
p370 [290]. Also the adaptive weights is determined iteratively (see above,
pp.368-370).

4.7.The results of the Multitaper Method

We have shown that the adaptive sub-band filtering of a givengaries can
be implemented readily with the EMD. How efficient issthiechnique? We
answer this question by comparing the MTM power spectra of botbrihiaal
time series and the reconstructed components. Fig. 22 shows thespewium
of the air temperature. The background spectrum really resethielesd noise,
since the power increases at low frequencies. There are appaee distinct
peaks in the spectrum. The strongest peak corresponds to thal diyele; the
next ones have periods of 12 and 8 hours. The high-frequency noise is also
apparent. Fig. 23 shows the reconstructed daily components of tredaiopsoil
temperature. These components are quite similar. However,aonalso notice
minor differences in their course.
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power density (unitszlcycle/deltat)

frequency (cycles/deltat)

Fig. 22.The multitaper power spectrum density of the airgerature.

Fig. 24 shows the MTM spectrum of the daily component of the air
temperature. It is evident that low- and high-frequency powedinmmished. Fig.

25 shows the high-frequency component of the air-temperatureMThkpower
spectrum of this noisy component is shown in Fig. 26. Obviously, dhifirims
again that the EMD is highly efficient when one tries t@fitbut or isolate signal
components.

Fig.27 shows the coherence and phase difference for the daiponents of
the air and topsoil temperature. We draw our attention h following
frequencies, 0.04, 0.08 and 0.12 (cycles/delta t). AlImost perfect cohéseseamn
for the main variation, still high for variation at frequended3 and 0.12. Notice
also the progressive phase difference at these frequencies.

Fig. 28 shows the seasonal components of the air and topsoil temmeratu
These are also quite similar. It is also apparent thatstileaccumulates the
thermal energy especially for days 145 to 175. Fig. 29 shows thesockeand
the phase difference for the seasonal components. The coheralseliggh and
phase difference is increasing with the frequency. The atesudts agree well
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with the wavelet analysis. However, we should emphasize hatréhe combined
EMD-MTM analysis enables much deeper insight into the theregaie at the

air-soil interface.
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Fig. 24.The multitaper power spectrrum density of the dadynponent of air temperature.
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Fig. 25.The high-frequency (noisy) component of the airgerature.
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5. STATISTICAL AND GEOSTATISTICAL ANALYSES OF TIME SERIES
OF THE PHYSICAL VALUES AND PROPERTIES OF SOIL

5.1. Field experiment

The data analyzed in this monograph originated from two soufbesfirst
was the measurement data acquired within the research tpsBjegcture of
radiation balance and the thermal-moisture relations of €aitint KBN, No. PB
1679/5/91 headed by Prof. R.T. Walczak [416]. The second — data collected
within the research project KBN No. 6 PO6H 029 20 (2001-2003) ,Irgag&iin
of spatial variability of physicochemical soil properties a base for precision
agriculture,, State Committee for Scientific Research, dutiregperiod of 2001-
2003, headed by the first of the authors of this monograph.

In the case of the first object of investigation, measungsne@ere taken in an
experimental plot of the Agrometeorological Station, Universit Agriculture,
Lublin, in the field of the Agricultural Experimental Statiobhiversity of
Agriculture, located next to the Institute of Agrophysics in Lub(ielin,
51°13'29" N 22°38'42" E). The soil at Felin is classified as a grey brown podzolic
soil. R. Turski (verbal information) classified the soil &ifr as a grey brown
podzolic soil developed from a loess-like formation, incomplete, oradk c
formation. In the object studied, the following soil profile watedmined: from 0
to about 20 cm — humus horizon with brown-grey colouring, distinctlyratguh
from the next layer with reddish colouring, below 30 cm somewbhter in
colour with yellow spots and with high sand content. From the depthooft 45
dm there appear fragments of weathered lime rock which becarigmificant
material component of the soil below 90 cm [169]. The Table 2 meibe
granulometric composition and some physical-chemical propertigsedfoil at
the Agricultural Experimental Station, University of Agricuéuifurther referred
to as the RZD AR Station) at Felin near Lublin [207].

The measurements were taken on the object with plant canopyitinmait
plants (as reference). The measurements were taken withipetiod of April-
July, 1993. The arrangement of the experimental plots, 50 x 40 m inwsige
such that they were strung along a road passing through the midtke station
area. The fallow plot and the meteorological station plot had anpbsitions
during the measurement seasons, while particular cultureslecated on plots
with an annual cycle of rotation (a specific culture would losed in successive
years by one plot in anticlockwise direction). TDR probes, shat®.2 m from
one another, were installed opposite the midpoints of the plotsrdw at the
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distance of 3 m from the path. Each of the probes had one mastwser. The
moisture sensors covered 5 cm soil layers and were installdgb iplots in the

soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55,
0.8-0.85 m. Measurements of soil moisture were taken once a mapei
afternoon hours. The time required to take measurementsthae alleasurement
points in he experiment was approximately half an hour.

Soil density was determined according to the gravimetric methathedpasis
of soil cores sampled with cylinders 100%im volume and 5 cm high from the
levels of TDR probe installation, down to the depth of 85 cm. Thesije
measurements were taken in close proximity to the moistignss (about 0.5 m
from the sensors) at the end of the moisture measuremertnsesbhree soll
cores were sampled from each horizon.

The main mineral components of the soail, i.e. quartz and other nsinexe
determined from the granulometric distribution assuming that €21 mm
fraction contains mainly quartz, and other minerals are contamehe fraction
below 0.02 mm [78,390].

Table 2. Granulometric composition and some physical-chehpoaperties of the soil at the RZD
AR Station, Felin near LublirZ07.

% content of granulometric fraction <1 mm

Layer pH OoM PD
(cm) 101 0.1 0.05 0.02 0.006 < (KCI) (%) (Mgm'?’)
-0.05 -0.02 -0.006 -0.002 0.002
0-15 20 6 42 23 3 6 5.8 1.48 2.61
30-40 16 10 42 13 6 13 5.4 - 2.63
80-90 66 10 9 4 3 8 5.6 - 2.58

OM — organic matter, PD — particle density of sdtattion.

5.2. Results of statistical analysis

The distribution of atmospheric precipitation during the periothefstudy is
presented in Fig. 30a. The sum of precipitation for that periodl4a$% mm in
total; the maximum recorded precipitation occurred on the 174tlofdtne year
and amounted to 27.9 mm. The effect of precipitation is mo&tyiseflected in
the plot without plants, in the surface horizon of the soil (Big), while the
presence of plant canopy has a distinctly damping effect oretgotal runs of
soil moisture. The extent to which plants could change the time of soil
moisture depended on their stage of development (i.e. the intexisisater
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uptake by their roots), on the water interception on a given,pdaumt on the
surface runoff which in turn was determined by the degree opaction of the
surface horizon of the soil (Fig. 30b).
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Fig. 30. Precipitation (a) as a function of time and sailkbdensity (b) of spring barley, rye and
bare soil.
The mean values of soil density measured in the plots are shwtvmelation

to depth, in Fig. 30b. The lowest density was observed in thewididbarley, in
the arable layer, and the highest in the field with rye. Belevarable layer, the
differentiation of soil density in the objects studied veady slight. The soil
density distributions observed in the particular plots welaed primarily to the
time that elapsed from the last tillage applied, to thesametogical conditions,
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and to the occurrence of the same genetic horizons at different depths imgrartic
cultivation plots.
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Rys. 33.Soil heat capacity as a function of time for diéiet depths (a - spring barley, b - rye, ¢ -

bare soil) during growing season.

3.0E+06
v
'E2.5E+06
2
'%2.0E+O6 T
©
Q.
I
(8]
=1.5E+06 7 .
(]
T
1.0E+06 1 1 | |
110 130 150 170 190 210
Day of year
3.0E+06
¥
9 2.5E+06 7
2
2 ,
E20E+06+ N o
©
o T
I ~
o
= 1.5E+06 +
(]
T
1.0E+06 1 1 | |
110 130 150 170 190 210
Day of year
3.0E+06
& ]
= 2.5E+06
3 5
£ 0E+06 5
©
Q. . A \ I
© : v ~ o
o et e
w1.5E+06 - B -
[« z=0m ———2z=0.05m z=0.1m
I z=02m 7=03m z=0.4m
1.0E+06 —'—Z‘=O.5 m z=0.8‘ m
110 130 150 170 190 210

Day of year

61



62

1.2E-06

1.0E-06 +

ivity (m? s%)

>8.0E-07

iffusi

6.0E-07

4.0E-07

Thermal d

2.0E-07

110

1.2E-06

150 170
Day of year

210

O
~

1.0E-06

«

o

m

o

Ny
|

6.0E-07

4.0E-07 T

Thermal diffusivity (m? s%)

2.0E-07

110

1.2E-06

130

150 170
Day of year

190 210

O
~

1.0E-06

£ 8.0E-07 1
6.0E-07 +

4.0E-07

Thermal diffusivity (m? s*)

—+—2z=0.05m
z=0.2m
z=0.4m
z=0.8 n

IR

[eY=ToYe)

Gk g
T=33

2.0E-07

Rys. 34.Soil thermal diffusivity as a function of time fdifferent depths (a - spring barley, b - rye,

¢ - bare soil) during growing season.

150 170 190
Day of year

210



63

Table 3. Summary statistics for water content, thermal catigity, heat capacity and thermal
diffusivity of spring barley.

Whole

Depth (m) 0 0.5 0.1 0.2 0.3 0.4 0.5 X
profile

Water content (thm)
Mean 0.195 0.21 0.219 0.199 0.258 0.229 0.232 0.2121219
Minimum 0.108 0.14 0.149 0.142 0.204 0.19 0.189 6D.1 0.108
Maximum 0.343 0.325 0.31 0.272 0.318 0.278 0.27824®. 0.343
Std.Dev. 0.054 0.049 0.047 0.043 0.036 0.031 0.088027 0.045
Coef.Var(%) 27.8 23.1 21.4 21.7 13.9 13.7 144 12.520.5
Skewness 0.612 0.276 -0.009 0.305 0.283 0.211 0.18®94 0.021

Kurtosis 2969 1823 1.798 1.685 1435 1.310 1.208441 2.362
Thermal conductivity (W mK™)
Mean 0.771 1185 1.086 1.340 2.111 1.840 1.603 51.99.491

Minimum 0.361 0.644 0.691 0.960 2.034 1.743 1.416888 0.361
Maximum 1.355 1583 1404 1626 2.191 1942 1.72107@ 2.191
Std.Dev. 0.268 0.250 0.242 0.225 0.052 0.081 0.08066 0.479
Coef.Var(%) 34.8 211 22.3 16.8 2.5 4.4 5.6 3.3 132
Skewness 0.253 -0.273 -0.403 -0.216 0.030 0.038 190.1-0.374 -0.401

Kurtosis 2.364 1875 1.839 1.782 1467 1.247 1.327579 2.145
Heat capacity x 10(J m® K%
Mean 1.683 1852 1.841 1865 2.309 2.107 2.033 72.1@.975

Minimum 1.318 1559 1550 1.629 2.083 1943 1.852914 1.318
Maximum 2300 2.333 2223 2172 2560 2.311 2.22425%2 2.560
Std.Dev. 0.227 0.203 0.196 0.181 0.150 0.131 0.140112 0.253
Coef.Var(%) 135 11.0 10.6 9.7 6.5 6.2 6.9 5.3 12.8
Skewness 0.612 0.276 -0.009 0.305 0.283 0.211 0.18®95 -0.181

Kurtosis 2968 1824 1.798 1.685 1436 1.311 1.208442 2.546
Thermal diffusivity x 10 (m? s%)
Mean 4454 6.331 5824 7.135 9.166 8.742 7.892 59.477.377

Minimum 2738 4129 4455 5892 8.561 8.404 7.649177 2.738
Maximum 6.002 7.147 6.623 7.790 9.763 8.997 8.118873 9.873

Std.Dev. 1.011 0.738 0.759 0593 0372 0.173 0.186203 1.752
Coef.Var(%) 22.7 11.7 13.0 8.3 41 2.0 1.6 2.1 23.8
Skewness -0.402 -1.043 -0.814 -0.960 -0.315 -0.204€35 0.274 -0.604

Kurtosis 2.118 3472 2215 2.855 1435 1.643 1.636447 2.578
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Table 4. Summary statistics for water content, thermal caetidity, heat capacity and thermal
diffusivity of rye.

Depth (m) O o5 01 02 03 04 05 . pPo?‘illz
Water content (thm)

Mean 0215 0221 0218 0221 0237 0221 0209 80.250.225

Minimum 0135 0156 0.163 0.188 0.190 0.187 0.171.236 0.135

Maximum 0325 0326 0322 0287 0310 0300 0295280 0.326

Std.Dev. 0.044 0044 0036 0032 0033 0035 003012 0.038

Coef.Var(%) 20.6 19.8 16.6 14.3 13.9 15.8 18.0 4.8 16.9
Skewness 0.470 0527 0.771 0.789 0.600 0.820 0.863026 0.292

Kurtosis 2592 2260 3.072 2248 2.072 2.368 2.480.885 2.195
Thermal conductivity (W mK™)
Mean 1.705 1773 1.863 1591 1.809 1598 1.996 82.031.797
Minimum 1.368 1.479 1.676 1423 1.694 1432 1.914.002 1.368
Maximum 1.939 1973 2037 1761 1955 1.717 2.142.082 2.142
Std.Dev. 0.141 0.122 0.085 0.087 0.076 0.093 0.081016 0.181
Coef.Var(%) 8.3 6.9 4.6 55 4.2 5.8 4.1 0.8 10.1
Skewness -0.631 -0.470 -0.049 0.647 0.167 0.519 540.4-0.321 -0.147
Kurtosis 2983 2.681 2445 2039 1783 2.085 1.674.228 2.041
Heat capacity x 10(J m® K%
Mean 2.018 2.059 2.077 1.990 2.121 1.992 2.096 52.272.078

Minimum 1684 1.788 1.849 1851 1925 1.850 1.938.182 1.684
Maximum 2479 2499 2513 2264 2427 2323 2456398  2.513

Std.Dev. 0.185 0.183 0.151 0.132 0.138 0.146 0.1571521 0.171
Coef.Var(%) 9.2 8.9 7.3 6.7 6.5 7.3 7.5 2.3 8.2
Skewness 0470 0529 0.771 0.789 0.601 0.821 0.868027 0.276
Kurtosis 2,594 2265 3.070 2.247 2.074 2.369 2.481.884 2.054
Thermal diffusivity x 10 (n? s%)

Mean 8.457 8.627 8.986 8.001 8.542 8.029 9.541 88.958.643
Minimum 7.823 7.898 8.107 7.691 8.055 7.652 8.721.703 7.652
Maximum 8.838 9.019 9.381 8.160 8.840 8.210 9.879.17® 9.879
Std.Dev. 0.248 0.269 0.262 0.129 0.215 0.159 0.31®@147 0.533
Coef.Var(%) 2.9 3.1 2.9 1.6 25 2.0 3.3 1.6 6.2
Skewness -0.615 -0.686 -1.173 -0.839 -0.750 -0.81K176 0.080 0.359

Kurtosis 2516 2.677 4236 2.324 2507 2411 3.206.434 2.477
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Table 5. Summary statistics for water content, thermal cetidity, heat capacity and thermal
diffusivity of bare soil.

Depth (m) 0 0.5 01 02 03 04 0.5

hole
"“profile

Water content (fhm)
Mean 0.155 0.270 0.254 0.218 0.243 0.264 0.302 30.330.255
Minimum 0.111 0.239 0.219 0.197 0.212 0.247 0.289.32D 0.111
Maximum 0.278 0.332 0.305 0.243 0.267 0.284 0.311.34® 0.345

Std.Dev. 0.034 0.021 0.023 0.013 0.013 0.010 0.006.005 0.053
Coef.Var(%) 22.1 7.7 9.0 6.0 5.2 3.7 1.6 1.6 20.9
Skewness 1.056 0.243 0.189 0.309 0.071 0.332 -0.196081 -0.631
Kurtosis 3.870 2415 1.833 1.973 2299 2.026 2.382.481 3.207
Thermal conductivity (W M K™)
Mean 0.821 1867 1.817 1.706 2.032 2.095 2.062 22.131.816
Minimum 0.239 1814 1.730 1.642 1981 2.077 2.056.11%2 0.550
Maximum 0.406 1954 1900 1.776 2.059 2127 2.066.162 2.162
Std.Dev. 0.254 0.037 0.045 0.050 0.024 0.017 0.00Q.007 0.413
Coef.Var(%) 30.9 2.0 2.5 2.9 1.2 0.8 0.1 0.3 22.7
Skewness -1.056 -0.206 -0.084 0.170 -0.599 0.836168 1.315 -1.943
Kurtosis 3.870 1.840 1.957 1.440 2.025 2.214 2.132.955 5.834
Heat capacity x 10(J m® K™%
Mean 1.621 2.254 2177 2.019 2221 2322 2445 92.582.206
Minimum 1436 2.125 2.030 1.931 2.091 2.251 2.391.542 1.436
Maximum 2,134 2513 2390 2.124 2321 2.405 2.483.6412 2.641
Std.Dev. 0.143 0.872 0.955 0.549 0.524 0.410 0.2048.220 0.284
Coef.Var(%) 8.8 3.9 4.4 2.7 2.4 1.8 0.8 0.9 12.9
Skewness 1.057 0.243 0.194 0.306 0.066 0.334 -0.2@p088 -0.919
Kurtosis 3.869 2411 1.832 1.973 2307 2.029 2.382.600 3.510
Thermal diffusivity x 10 (m? s%)
Mean 4977 8.292 8.351 8.446 9.148 9.022 8.432 58.238.113

Minimum 3.832 7.774 7951 8316 8.870 8.844 8.319.098 3.832
Maximum 6.993 8537 8.653 8.603 9.472 9.228 8.597.40B 9.472

Std.Dev. 1.091 0.164 0.174 0.071 0.124 0.093 0.060.061 1.291
Coef.Var(%) 21.9 2.0 2.1 0.8 1.4 1.0 0.7 0.7 15.9
Skewness 0.433 -0.507 -0.136 0.025 -0.405 0.202 350.2 0.189 -2.285

Kurtosis 1597 2647 2138 2351 2908 2.106 2.4232.900 7.361
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The time runs of soil moisture, thermal conductivity, capaaityg diffusivity
in the plots with barley and rye and in the bare plot are pexsémtFig. 31, 32,
33, 34. The dynamics of particular variables was related testdme of plant
development in the plots under study. Rye, which was alreadygweiin and
had time to consume most of the water available in the saiked a continual
decrease in the soil moisture. In turn, the condition of the plants did not permit the
soil to be re-supplied with water from precipitation, as only thiéase horizon of
the soil increased its moisture content slightly after afati Barley, which
during the period of the experiment went through all of its develnopstages,
shows in the soil moisture distribution both the amount of water usepldnt
growth and the amount of water that reached the soil surfheebdre field was
characterized by the most uniform distribution of moisture irstlileprofile. The
surface horizon of the fallow plot was characterized by ttengest dynamics
and effect of precipitation on soil moisture.

The thermal properties of the soil (Fig. 32, 33, 34) reftegdamarily the
moisture status of the soil (Fig. 31), and to a lesser extdrg soil compaction
condition (Fig. 30b). The time runs of the heat capacity of thecsoiformed
with the soil moisture runs. Slightly less similar to the shwe runs were the
time runs of the thermal conductivity. In the case of the thediffaisivity they
were distinctly different from the moisture runs. In somehefdiffusivity runs a
certain reflection of the moisture runs could be noticed, but irt nfakhem the
diffusivity increased with a reduction in the soil moistuomtent (Fig 34). This
type of time runs indicates that with a certain soil dertbigéythermal diffusivity
of the soil was already beyond its maximum, and a decreabe soil moisture
resulted in a diffusivity shift towards its maximum.

The mean values of soil moisture within the whole profile vearelar in the
plots with plants, and somewhat different in the bare plot. Toks plith plants
had relatively uniform moisture distributions within the profilee bare plot was
characterized by a considerable drop in soil moisture valugfeinsurface
horizon, below which the values were more homogeneous.

The mean values of soil density in the rye plot and in thewfavere almost
the same; in the barley plot the mean soil density was |tveer in the fallow.
The mean values of the thermal properties in the soil prdifieeflect the water
content in the soil, but in the case of thermal conductivily diffusivity the
barley plot had values somewhat lower than the rye plot, evenhhbegsoil
moisture of the barley plot was higher, but in this case theuctiniy and
diffusivity were also significantly affected by the soihdéy which was higher in
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the rye plot. The heat capacity of the soil conformed to the rsoisture
distribution in the plots.

Standard deviation was used as a measure of the scatsail ohoisture
values. The greatest scatter was observed in the plotsplgitih canopy, the
smallest in the bare plot. Coefficients of variability ccédted for the whole
profile in particular plots were the highest for the moistartghe rye plot and for
the thermal properties in the barley plot. The lowest varighildis observed in
the case of moisture in the bare plot and the thermal propéntigne rye plot.
Analyzing the soil profiles, the greatest variability vedmserved for the moisture
and thermal properties in the barley plot, and the smallestbildyiavithin the
profile for moisture, heat capacity, and thermal conductivity and diffysifisoil
for horizons below 0.1 m was observed in the bare plot. In the cakerofal
conductivity and diffusivity of soil in the 0-0.1 m the lowest values were olderve
in the rye plot.

Statistics characterizing the soil moisture distributions histograms
(asymmetry and kurtosis) indicate mainly a slight right-hananasetry and a
somewhat smaller than normal distribution concentration of so#torei values
around its mean value (normal distribution - asymmetry equal 0, kurtosis equal 3)
Distribution of the heat capacity of the soil were simib those of soil moisture.
Thermal conductivity and diffusivity of the soil showed a largtdft-hand
asymmetry in the distribution of values and somewhat sm#ii@n normal
distribution concentration of values of those thermal properti¢isec$oil around
their mean values.

5.3. Results of correlation analysis

Calculations of linear correlation of the soil featunesler consideration were
performed at the significance level of p<0,05, and the resuliiseotalculations
are presented in Table 6, 7, 8 (statistically significantetations are highlighted
with bold type). Three objects were considered — two with ptamér and one
bare. Correlations were calculated for the soil moisture, thermal coritiydidat
capacity, and thermal diffusivity. The results of the catieh analysis indicate
that the presence of plants affected both the values of thelatmns and their
significance at a given depth. In a significant majority cafses, high and
significant coefficients of correlation were obtained fur particular thermal and
moisture properties of the soil between the particular twsiz The lowest
number of significant correlations was observed in the rye fhlethighest in the
barley plot. In the barley plot, between the soil surface andzdrari below
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z=0.2 m, and in the fallow plot only in the surface horizon of down to zm0.1
significant negative correlations were observed — in the \bgllet for all the
features under consideration, and in the fallow plot for therthlediffusivity. In
the other cases the correlations were positive. Lackootlation between the
surface of the soil z=0 m and the horizon of z=0.2 m, and betwedorizen of
z=0.05 m and below z=0.4 m was observed in the barley plot, though for the
thermal diffusivity in that plot lack of correlation was oh&=l only in two cases.
The rye plot was characterized by a lack of correlatiawéxn the levels of z=0,
z=0.05m and below z=0.2 m, the situation being varied for the partit@iamal
properties and moisture of the soil. Thermal conductivity in thjecbthad the
highest number of no correlation. The bare plot showed no significamation
for all the variables under consideration only between thasudf the soil, z=0
m, and the level below z=0.2 m.

5.4. Analysis of soil moisture semivariograms

The temporal-spatial variability of soil moisture and tharproperties of soil
was also studied with the help of semivariograms. The nugge¢s;asills and
ranges of temporal autocorrelation were determined, seagrarn models were
fitted to the empirical values, and model fitting parameterse vwetermined
(Table 9, 10, 11). The quality of fitting of the theoretisamivariogram models
to the empirical data was defined by means of the determinatifficient R
and residual squares sum RSS of the model values and the ehwailies of the
semivariogram. High values of the determination coefficiadtlaw RSS values
(in most cases R> 0.9, RS810°) indicate a very high quality of theoretical
models fitting to the empirical values of the semivariograms.

Temporal autocorrelation was noted for all the features studidbei soll
profile. The form of the temporal autocorrelation in the arablézbworwas
spherical in all the plots, and below the arable horizon changbd teaussian in
the plots with plants and to exponential in the bare plot. dgteeht values of the
temporal autocorrelation range were observed for the ryebplotv the arable
horizon (210 days), and the lowest in the surface horizon of the ny@@@alays
for diffusivity), the barley plot and the bare plot (17.4 and 18.Ysda
respectively). The results indicate that the shortest “meéimiargerms of the
event (cause) resulting in changes in the distribution ofrsoisture or thermal
property is most often displayed by the surface horizon of thevgti its non-
stabilized structure (loose soil). The deeper horizons, whengrtitesses of mass
exchange occur more slowly and where soil density does not chanpewitioic



69

the period under study, the causes of changes in the soil maistupasible” for
a longer period of time, approximately half a year. The rye plathich the soil
density in the surface horizon was the highest, was charactdary an over a
month-and-a-half radius of autocorrelation in the arable horizon.

5.5. Analysis of the fractal dimension of soil moisture

Fractal dimensions calculated on the basis of smovariogramgaaacheters
of line fitting to the empirical data of semivariance liwe togarithmic system of
coordinates, are presented in Fig. 35 and in Tables 9, 10, 11. I enajesty of
cases the standard fitting error was below 0.1, while thendigi&tion coefficient
R? was above 0.9, thea number being the population of data for which the
standard fitting error and the determination coefficienteweglculated. These
values indicate that the obtained results of line slope isdprevide a good
indicator of semivariance change direction in the objects unddy,sand thus
permit satisfactory determination of the fractal dimensions.

The course of the fractal dimension of the thermal propertiesoibfwas
similar to that for the soil moisture. Slight differencaghie form of the courses
for the thermal properties may have resulted from the loligion of soil density
in the soil profile. High values of the fractal dimensionssofi moisture and
thermal properties in the surface horizon of the soil indicateigh level of
randomness in their distribution. Such a situation in the diswibubdf soil
moisture and thermal properties is observed in the fallow througheusoil
profile. A clear decrease in the fractal dimension valuel wicreasing depth,
however, was observed in the plots with plant cover. The deckzasebe
interpreted in terms of determination of the soil moistureidigion in time by
an external factor. In this the external factor was thetplais also possible to
interpret the decrease in another way, saying that thesptansed a decrease in
the randomness of the soil moisture distribution in those plots.
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Table 6. Correlation coefficients between the variables snead at the eighth depths (a - spring
barley). The correlation coefficients are signifitébold type) at p < 0.05, N=75.

cvgr?ttsgt z=O0m z=0.05mz=0.1m z=02m z=0.3m z=04m z=05m z=0.8m
z=0m 1.00 0.79 0.47 -0.01 -0.27 -0.42 -0.44 -0.57
z=0.05m 0.79 1.00 0.89 0.55 0.30 0.14 0.10 -0.06
z=0.1m 0.47 0.89 1.00 0.84 0.66 0.53 0.50 0.33
z=0.2m -0.01 0.55 0.84 1.00 0.95 0.88 0.85 0.73
z=0.3m -0.27 0.30 0.66 0.95 1.00 0.97 0.95 0.89
z=0.4m -0.42 0.14 0.53 0.88 0.97 1.00 0.96 0.94
z=0.5m -0.44 0.10 0.50 0.85 0.95 0.96 1.00 0.92
z=0.8 m -0.57 -0.06 0.33 0.73 0.89 0.94 0.92 1.00
COT}Z?:&E:W z=0m z=0.05mz=0.1m z=0.2m z=0.3mz=0.4m z=05m 2z=0.8m
z=0m 1.00 0.76 0.46 -0.01 -0.29 -0.48 -0.45 -0.58
z=0.05m 0.76 1.00 0.90 0.60 0.33 0.12 0.14 -0.07
z=0.1m 0.46 0.90 1.00 0.84 0.65 0.46 0.51 0.27
z=0.2m -0.01 0.60 0.84 1.00 0.94 0.84 0.84 0.68
z=0.3m -0.29 0.33 0.65 0.94 1.00 0.96 0.96 0.88
z=0.4m -0.48 0.12 0.46 0.84 0.96 1.00 0.97 0.94
z=0.5m -0.45 0.14 0.51 0.84 0.96 0.97 1.00 0.91
z=0.8 m -0.58 -0.07 0.27 0.68 0.88 0.94 0.91 1.00
Heat _ _ _ _ _ _ _ _
capacity z=0m z=0.05mz=0.1m z=02m z=0.3m z=04m z=05m z=0.8m
z=0m 1.00 0.79 0.47 -0.01 -0.27 -0.42 -0.44 -0.57
z=0.05m 0.79 1.00 0.89 0.55 0.30 0.14 0.10 -0.06
z=0.1m 0.47 0.89 1.00 0.84 0.66 0.53 0.50 0.33
z=0.2m -0.01 0.55 0.84 1.00 0.95 0.88 0.85 0.73
z=0.3m -0.27 0.30 0.66 0.95 1.00 0.97 0.95 0.89
z=0.4m -0.42 0.14 0.53 0.88 0.97 1.00 0.96 0.94
z=0.5m -0.44 0.10 0.50 0.85 0.95 0.96 1.00 0.92
z=0.8 m -0.57 -0.06 0.33 0.73 0.89 0.94 0.92 1.00
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Continuation - Table 6

d-irf?uesrir\?i?)l/ z=O0m z=0.05mz=0.1m z=02m z=0.3m z=04m 2z=05m 2z=0.8m
z=0m 1.00 0.68 0.41 0.06 0.24 -0.37 -0.41 -0.55
z=0.05m 0.68 1.00 0.89 0.63 -0.38 0.25 0.24 0.00
z=0.1m 0.41 0.89 1.00 0.90 -0.59 0.46 0.52 0.27
z=0.2m 0.06 0.63 0.90 1.00 -0.72 0.62 0.72 0.52
z=0.3 m 0.24 -0.38 -0.59 -0.72  1.00 -0.98 -0.95 -0.89
z=0.4 m -0.37 0.25 0.46 0.62 -0.98 1.00 0.96 0.94
z=0.5m -0.41 0.24 0.52 0.72 -0.95 0.96 1.00 0.92
z=0.8 m -0.55 0.00 0.27 0.52 -0.89 0.94 0.92 1.00

Table 7. Correlation coefficients between the variables snead at the eighth depths (Rye). The
correlation coefficients are significant (bold typep < 0.05, N=81.

Water - ,_gm  2=005m z=01m 2z=02m 2z=03m z=0.4m %. z=0.8m
content
z=0m 1.00  0.97 090  0.20 014 022 0.22 0.25

z=0.05m 0.97 1.00 0.94 0.20 0.12 0.22 0.22 0.25
z=0.1m 0.90 0.94 1.00 0.40 0.32 0.41 0.41 0.32

z=0.2 m 0.20 0.20 0.40 1.00 0.98 1.00 0.99 0.70
z=0.3m 0.14 0.12 0.32 0.98 1.00 0.99 0.98 0.70
z=0.4 m 0.22 0.22 0.41 1.00 0.99 1.00 0.99 0.71

z=0.5m 0.22 0.22 0.41 0.99 0.98 0.99 1.00 0.70
z=0.8 m 0.25 0.25 0.32 0.70 0.70 0.71 0.70 1.00

COT}Z?:&E:W z=0m z=0.05mz=0.1m z=0.2m z=0.3mz=04m z=0.5m z=0.8m
z=0m 1.00 0.95 0.88 0.15 0.05 0.16 0.13 0.26
z=0.05m 0.95 1.00 0.96 0.18 0.05 0.18 0.15 0.30
z=0.1m 0.88 0.96 1.00 0.31 0.18 0.30 0.28 0.34
z=0.2 m 0.15 0.18 0.31 1.00 0.96 0.99 0.99 0.74
z=0.3m 0.05 0.05 0.18 0.96 1.00 0.97 0.97 0.71
z=0.4 m 0.16 0.18 0.30 0.99 0.97 1.00 0.99 0.76
z=0.5m 0.13 0.15 0.28 0.99 0.97 0.99 1.00 0.75

z=0.8 m 0.26 0.30 0.34 0.74 0.71 0.76 0.75 1.00
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Continuation - Table 7

Heat

capacity z=O0m z=0.05mz=0.1m z=02m z=0.3m z=04m z=05m z=0.8m
z=0m 1.00 0.97 0.90 0.20 0.14 0.22 0.22 0.25
z=0.05m 0.97 1.00 0.94 0.20 0.12 0.22 0.22 0.26
z=0.1m 0.90 0.94 1.00 0.40 0.32 0.41 0.41 0.32
z=0.2m 0.20 0.20 0.40 1.00 0.98 1.00 0.99 0.70
z=0.3m 0.14 0.12 0.32 0.98 1.00 0.99 0.98 0.70
z=0.4m 0.22 0.22 0.41 1.00 0.99 1.00 0.99 0.71
z=0.5m 0.22 0.22 0.41 0.99 0.98 0.99 1.00 0.70
z=0.8 m 0.25 0.26 0.32 0.70 0.70 0.71 0.70 1.00

d-irf?uesrir\?i?; z=O0m z=0.05mz=0.1m 2z=02m z=0.3m z=04m 2z=05m 2z=0.8m
z=0m 1.00 0.85 0.68 0.26 0.11 0.30 0.15 0.08
z=0.05m 0.85 1.00 0.90 0.35 0.13 0.37 0.20 0.14
z=0.1m 0.68 0.90 1.00 0.61 0.40 0.63 0.47 0.29
z=0.2m 0.26 0.35 0.61 1.00 0.92 0.99 0.95 0.49
z=0.3m 0.11 0.13 0.40 0.92 1.00 0.93 0.99 0.69
z=0.4 m 0.30 0.37 0.63 0.99 0.93 1.00 0.95 0.50
z=0.5m 0.15 0.20 0.47 0.95 0.99 0.95 1.00 0.67
z=0.8 m 0.08 0.14 0.29 0.49 0.69 0.50 0.67 1.00

Table 8. Correlation coefficients between the variables mess at the eighth depths (Bare solil).
The correlation coefficients are significant (bgtde) atp < 0.05, N=79.

cvgr?ttsgt z=0m z=0.05mz=0.1m z=02m z=0.3m z=04m z=05m z=0.8m

z=0m 1.00 0.49 0.31 0.15 0.17 0.14 0.02 -0.13
z=0.05m 0.49 1.00 0.95 0.85 0.83 0.83 0.50 0.38
z=0.1m 0.31 0.95 1.00 0.94 0.92 0.92 0.59 0.52
z=0.2m 0.15 0.85 0.94 1.00 0.96 0.99 0.74 0.66
z=0.3m 0.17 0.83 0.92 0.96 1.00 0.96 0.70 0.61
z=0.4m 0.14 0.83 0.92 0.99 0.96 1.00 0.74 0.66
z=0.5m 0.02 0.50 0.59 0.74 0.70 0.74 1.00 0.88
z=0.8 m -0.13 0.38 0.52 0.66 0.61 0.66 0.88 1.00
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COT}Z?:&E:W z=0m z=0.05mz=0.1m z=0.2m z=0.3mz=04m z=0.5m z=0.8m
z=0m 1.00 0.46 0.31 0.17 0.17 0.13 -0.01 -0.15
z=0.05m 0.46 1.00 0.95 0.85 0.82 0.82 0.49 0.38
z=0.1m 0.31 0.95 1.00 0.94 0.90 0.91 0.58 0.51
z=0.2m 0.17 0.85 0.94 1.00 0.96 0.98 0.73 0.64
z=0.3m 0.17 0.82 0.90 0.96 1.00 0.95 0.69 0.61
z=0.4m 0.13 0.82 0.91 0.98 0.95 1.00 0.74 0.65
z=0.5m -0.01 0.49 0.58 0.73 0.69 0.74 1.00 0.87
z=0.8 m -0.15 0.38 0.51 0.64 0.61 0.65 0.87 1.00

Heat _ _ _ _ _ _ _ _
capacity z=O0m z=0.05mz=0.1m z=02m z=0.3m z=04m z=05m 2z=0.8m
z=0m 1.00 0.49 0.31 0.15 0.17 0.14 0.02 -0.13
z=0.05m 0.49 1.00 0.95 0.85 0.83 0.83 0.50 0.38
z=0.1m 0.31 0.95 1.00 0.94 0.92 0.92 0.59 0.52

z=0.2m 0.15 0.85 0.94 1.00 0.96 0.99 0.74 0.66
z=0.3m 0.17 0.83 0.92 0.96 1.00 0.96 0.70 0.61
z=0.4m 0.14 0.83 0.92 0.99 0.96 1.00 0.75 0.66
z=0.5m 0.02 0.50 0.59 0.74 0.70 0.75 1.00 0.88
z=0.8 m -0.13 0.38 0.52 0.66 0.61 0.66 0.88 1.00

d}fﬁi:\r:t? z=O0m 2z=0.05mz=0.1m z=02m z=0.3m z=04m z=05m z=0.8m

z=0m 1.00 -0.40 -0.23 0.06 -0.08 -0.07 0.05 0.18

z=0.05m -0.40 1.00 0.95 0.78 0.83 0.83 0.50 0.38

z=0.1m -0.23 0.95 1.00 0.89 0.92 0.92 0.59 0.52

z=0.2m 0.06 0.78 0.89 1.00 0.92 0.94 0.69 0.66

z=0.3m -0.08 0.83 0.92 0.92 1.00 0.96 0.69 0.61

z=0.4m -0.07 0.83 0.92 0.94 0.96 1.00 0.74 0.66

z=0.5m 0.05 0.50 0.59 0.69 0.69 0.74 1.00 0.88

z=0.8 m 0.18 0.38 0.52 0.66 0.61 0.66 0.88 1.00
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Table 9. Fractal summary statistics and semivariogram petars for water content, thermal
conductivity, heat capacity and thermal diffusivatyspring barley.

Depth (m)

0 0.05 0.1 0.2 0.3 0.4 0.5 0.8

SE

R2

n

Model
Nugget Co
Sill Co +C
Range

RZ

RSS

SE

R2

n

Model
Nugget Co
Sill Co +C
Range

R2

RSS

SE

RZ

n

Model
Nugget Co
x10%

Sill Co +C
x10t2
Range

R2

RSS

SE

R2

n

Model
Nugget Co
X10-14

Sill Co +C
><10—14
Range

R2

RSS

Water content
0.079 0.103 0.062 0.016 0.019 0.014 0.021 0.016
0.94 0.913 0.964 0.991 0.987 0.991 0.985 0.989
29 24 24 79 66 66 66 66
Sph Sph Sph Lin Gauss Gauss Gauss Gauss
3.34E-4 1.00E-6 1.00E-6 1.00E-6 4.00E-500B-5 2.00E-5 1.00E-6
3.31E-3 2.67E-3 2.42E-3 5.36E-3 4.66E-3.34E-3 2.60E-3 2.54E-3
234 175 217 79 90 85 65 90
0.944 0.995 0.996 0.977 0.998 0.996 0.976 0.995
1.46E-6 8.19E-8 1.07E-7 4.65E-6 3.66E-7 2.86E1/OE-6 2.43E-7
Thermal conductivity
0.063 0.077 0.071 0.039 0.021 0.015 0.02 0.017
0.961 0.945 0.95 0.962 0.984 0.99 0.987 0.988
29 24 24 66 66 66 66 66
Exp Sph Sph Exp Gauss Gauss Gauss Gauss
8.00E-4 1.00E-4 1.00E-4 0.0001 9.00E-500B-5 1.40E-4 1.00E-5
8.87E-2 6.25E-2 5.80E-2 8.24E-2 7.87E-B.39E-2 1.92E-2 1.23E-2
48.3 225 22.1 112 95 80 65 93
0.979 0.996 0.993 0.982 0.997 0.994 0.979 0.996
2.44E-4 4.31E-5 1.25E-4 533E-4 1.19E-6 8.47ES02E-5 3.39E-6
Heat capacity
0.08 0.105 0.062 0.016 0.019 0.014 0.02 0.018

0.939 0.911 0.964 0.99 0.986 0.991 0.985 0.986
29 24 24 79 66 66 66 66
Exp Sph Sph Lin Gauss Gauss Gauss Gauss

1.00E-4 0.0001 1.00E-4 O0.00E+0 7.00E-4 1.00E-4 B40 1.00E-4

6.74E-2 4.64E-2 4.24E-2 9.34E-2 8.12E-2 0.059 4-B9E4.49E-2

36 174 217 79 90 85.4 62 89
0.97 0.995 0.996 0.975 0.998 0.996 0.979 0.995
2.41E-4 261E-5 3.58E-5 1.52E-3 9.56E-5 8.47E335E-4 6.51E-5
Thermal diffusivity

0.042 0.037 0.073 0.05 0.018 0.014 0.029 0.017

0.975 0.985 0.943 0.978 0.987 0.991 0.975 0.986
39 24 24 19 66 66 66 66

Sph Sph Sph Sph Gauss Gauss Gauss Gauss

0.032 0.001 0.001 0.000 0.004 0.0001 1.10E-3 140E-

0.888 0.497 0.485 1.67E-1 0.566 0.1962 2.81E-2 E-B5

34.5 38.3 22.5 16.5 90 85 53 82
0.989 0.991 0.985 0.763 0.998 0.998 0.962 0.994
3.00E-2 459E-3 1.75E-2 3.29E-2 2.93E-3 6.86E2433E-4 1.64E-3

R? — determination coefficienRSS — residual squares sum of model values andieaiplata, N —
data population, Sph — spherical, Exp — exponential— linear
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Table 10. Fractal summary statistics and semivariogram paenndor water content, thermal
conductivity, heat capacity and thermal diffusiwitiyrye.

Depth (m) 0 0.05 0.1 0.2 0.3 0.4 0.5 0.8
Water content
SE 0.093 0.101 0.078 0.044 0.046 0.019 0.011 0.039
R? 0.854 0.841 0.889 0.917 0.917 0.98 0.993 0.967
n 60 55 57 80 80 80 80 59
Model Sph Sph Sph Gauss Gauss Gauss Gauss Sph
Nugget Co 4.08E-4 3.32E-4 1.50E-5 3.00E-5 1.00E-500R-5 2.00E-5 8.00E-7
Sill Co +C 2.87E-3 3.15E-3 2.22E-3 6.83E-3 6.95E-8.82E-3 1.13E-2 2.49E-3
Range 47.3 52.7 53.5 155 145 160 170 47.1
R? 0.848 0.954 0.981 0.996 0.997 0.994 0.993 0.98
RSS 6.68E-6 2.12E-6 5.44E-7 4.94E-7 5.53E-7 1.04E1656E-6 7.16E-9
Thermal conductivity
SE 0.065 0.065 0.058 0.049 0.069 0.023 0.016 0.041
R? 0.932 0.924 0.934 0.902 0.872 0.974 0.987 0.964
n 50 55 57 80 80 80 80 59
Model Sph Sph Sph Gauss Gauss Gauss Gauss Sph
Nugget Co 4.30E-3 9.00E-4 1.00E-5 1.00E-4 1.00E-500H-4 1.00E-5 1.00E-6
Sill Co +C 2.77E-2 1.79E-2 9.72E-3 3.33E-2 1.87E-3.95E-2 2.38E-2 4.62E-4
Range 44 40.5 44 116 116 118 123 45.7
R? 0.882 0.955 0.964 0.997 0.994 0.996 0.996 0.979
RSS 3.87E-4 7.57E-5 2.07E-5 1.74E-5 1.03E-5 2.81ES8585E-6 2.63E-8
Heat capacity
SE 0.077 0.101 0.079 0.043 0.044 0.024 0.009 0.038
R? 0.902 0.842 0.89 0.92 0.922 0.97 0.995 0.97
n 55 55 55 80 80 80 80 59
Model Sph Sph Sph Gauss Gauss Gauss Gauss Sph
Q‘fgl%et €O 760E-3 5.80E-3 3.00E-4 5.00E-4 1.00E-4 4.00E-4 OB:0 4.00E-5
f'l"olczo *C 549E-2 554E-2 387E-2 119E-1 127E-1 154E-1 287 4.48E-3
Range 545 53 53.7 155 150 160 154 49
R? 0.929 0.954 0.981 0.996 0.997 0.994 0.991 0.981
RSS 9.30E-4 6.46E-4 1.65E-4 1.48E-4 1.33E-4 3.06E6431E-4 2.13E-6
Thermal diffusivity
SE 0.0437 0.162 0.096 0.023 0.025 0.14 0.009 0.04
R? 0.487 0.693 0.847 0.986 0.97 0.99 0.995 0.967
n 20 55 55 80 80 80 79 59
Model Sph Sph Sph Gauss Gauss Gauss Gauss Sph
Efg?ft €0 0001 00285 00067 1.10E-3  0.001 00011 1.00E-3 .00 0
31"0(1:40 *C 0.0682 0.15 0.1574 1.46E-1  0.486  0.2022 1.33 2B1E-
Range 9.3 81.4 67.9 210 161 205 182 46.7
R? 0.284 0.858 0.98 0.959 0.996 0.954 0.991 0.98
RSS 2.02E-2 9.05E-3 2.12E-3 8.31E-4 241E-3 1.99E2332E-2 9.79E-5




76

Table 11. Fractal summary statistics and semivariogram paenndor water content, thermal
conductivity, heat capacity and thermal diffusivitiybare soil.

Depth (m) 0 0.05 0.1 0.2 0.3 0.4 0.5 0.8
Water content
SE 0.219  0.091  0.042  0.023 0.4 0.28 0.09 0.0116
R? 0.716  0.851 096 0987 0962 0979 0.848  0.781
n 29 70 70 70 70 70 70 70
Model Sph Sph Sph Sph Exp Exp Lin Sph
Nugget Co 3.74E-4 1.86E-4 1.33E-4 173E-5 1.29E-5006-7 8.58E-7 1.07E-5
SillCo+C 1.48E-3 6.06E-4 9.36E-4 3.22E-4 277E-207E-4 4.48E-5 4.08E-5
Range 18.7 60.2 82.3 80.3 963 1281 70 60.1
R? 0.675 0765 0.933 0968 0921 0972 0.865  0.738
RSS 1.34E-6 3.54E-7 2.85E-7 1.85E-8 2.57E-8 4.58ELASE-9 2.06E-9
Thermal conductivity
SE 0.187  0.097 0.051  0.037 0.05 0029 0.094 0.114
R? 0.769  0.832 0.941 0967 00945 0978 0.838  0.786
n 29 70 70 70 70 70 70 70
Model Sph Sph Sph Sph Exp Exp Lin Sph
NuggetCo 1.06E-2 4.57E-4 4.47E-4 2.18E-4 2.50E-500B-6 9.76E-6 8.81E-6
SillCo+C 4.93E-2 144E-3 2.73E-3 2.17E-3 5.78E-&55E-4 5.0lE-5 3.42E-5
Range 18.6 57.8 73.1 66.4 735 1305 70 60.9
R? 0.75 0759 0914  0.949 0.898 0972  0.854  0.747
RSS 1.17E-3 2.02E-6 3.26E-6 1.38E-6 1.53E-7 1.30ELH8E-9 1.41E-9
Heat capacity
SE 0.218  0.092 0043 0024  0.039 0.03  0.093  0.144
R? 0.717 0.847 0.957 0985 0965 0977 0.844  0.702
n 29 70 70 70 70 70 70 70
Model Sph Sph Sph Sph Exp Exp Lin Sph
NUggetCo ¢ 60E.3  3.20E-3 2.27E-3 3.20E-4 2.70E-4 4.00E-5 OB-Z 2.23E-4
x1012 . = . = . = . = . = . = ! . =
f'l"olczo *C ,58E-2 1.05E-2 1.67E-2 5.54E-3 5.05E-3 3.61E-3 4H-8 7.22E-4
Range 18.8 58.9 84.9 762  106.5 126 70 59.9
R? 0.677  0.759 093 0967 0926 0971 0852  0.655
RSS 4.07E-4 1.10E-4 9.20E-5 5.86E-6 7.39E-6 1.44E3@B3E-7 8.50E-7
Thermal diffusivity
SE 0.171  0.087 0.038 0026 0038  0.028 0.09  0.116
R? 0.798  0.861  0.967 0.98  0.966 098 0848 0.781
n 29 70 70 70 70 70 70 70
Model Sph Sph Sph Lin Exp Exp Lin Sph
NuggetCo 595 00141 0.0082 1.00E-5 00014 0.0001 8.58E-D7EL3
X10.14 . . . . - . . . -4
SIGP*C 0551 0047 00661 7.82E-3 00346 0.0244 4.48E-D8E3
Range 18.1 60.9 89 70 1098  127.8 70 60.1
R? 0.811 0774 0.941 0987 0927 0972 0.865 0.738
RSS 1.12E-1 2.07E-3 1.17E-3 5.65E-6 3.42E-4 6.19ELSI8E-5 2.06E-5
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Rys. 35.Fractal dimension as a function of depth a) watertent, b) thermal conductivity, c) heat
capacity and d) thermal diffusivity for rye, barlsand spring barley.

5.6. Results of reciprocal correlation analysis

For the determination of reciprocal correlation, precipitatdata and data
from soil moisture measurements with the TDR meter weeel.uBhe lack of
precipitation of a given day was represented in the data €etran precipitation.
Calculations of reciprocal correlation of precipitation and swiisture at various
depths were made for three objects — spring barley, rye, aachi at the level
of significance of p<0.05. The results of the calculations a¥eepted in Table
12. No significant reciprocal correlation was found between tbeigtation and
soil moisture in the soil profile for any of the objects studiede Tack of
reciprocal correlation could have been the result of the populafialata that
were used for the study, or of the effect of other factors,péagts, that had a
more significant effect on the soil moisture in a giverjecbthan that of
precipitation. The earlier analysis of correlation (Table 6, Pa8jially supports
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this observation. Although the correlation analysis indicateskadfacorrelation

between the variables under consideration, observation of then@isiure runs
in particular objects and of precipitation distribution shalearly that rainfall

has an effect on the soil moisture. The amount of precipitatiaterwthat
increased the soil moisture depended on the strength of thiallfabn the

hydrological properties of the soil (primarily the soil densithe status of the
plant cover, and surface runoff. It can be assumed that the muasfhot overly
large and similar in all of the objects studied. Basing on theigit&tion

distribution and on the soil moisture runs, an attempt was mafiading a

temporal and spatial relationship between those variables, ampléyr the

purpose the geostatistical methods which permit time and spéeeincluded in
the analysis.

Table 12.Correlation between rainfall and water contentdiffierent depths - z.

Rainfall z=0 m z=0.05mz=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5m z=0.8 m

Barley

Rainfall 1.00 0.22 0.14 0.01 -0.10 -0.13 -0.18 -0.15 -0.19
Rye

Rainfall 1.00 0.04 0.05 -0.04 -0.18 -0.18 -0.18 -0.18 -0.16
Bare soil

Rainfall 1.00 0.06 0.04 0.01 -0.09 -0.09 -0.10 -0.13 -0.15

5.7. Results of cross-semivariance analysis

Analysis of semivariance and cross-semivariance of pretipitand soil
moisture was performed for the three objects under study. Shisref analyses
concerned with precipitation and soil moisture at thelle¥ z=0 m for each of
the objects under study are shown in figures (Fig. 36, 37, 38hdanther levels
the results are presented in tables 13, 14, 15. The tables,rapathé model and
cross-semivariogram parameters, provide also statisticthadretical cross-
semivariogram model fitting to empirical data, i.e. deternonatoefficients R
and residual squares sums RSS of the values from the moddieardhpirical
data of the cross-semivariogram. In a majority of cases higkwvavere observed
in the case of the determination coefficient, and low values oR®®. These
data indicate good agreement in the fitting of the theoretiwadels to the
empirical data of the corss-semivariograms. In a notablerityapf cases, the
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fitted cross-semivariogram models were Gaussian modelsjrbthie plots with
plants and in the bare plot.

The earlier analyses of autocorrelation using semivariogrstmsved the
existence of a temporal relationship in the soil moistureildigion (Table 9, 10,
11, Fig. 36a). The temporal autocorrelation radii varied withdéph, but were
also related to the status of the plant cover on a given olijeetipitation,
subjected to semivariance analysis, displayed a totablaidmporal dependence
(Fig. 36Db). This result indicates the random character oft@ioon in time. The
calculated cross-semivariance between precipitation and thensisiture (Fig.
36¢, Table 13) indicates the existence of a temporal relatpriBhe nugget and
sill values were positive in the surface horizon of thead varied negatively in
the deeper layers. In the plot with plants, the change occuresatiglat z = 0.2
m, and in the bare plot not until z = 0.4 m (Table 13, 14, 15). diffierence in
the transition from positive to negative values at different depths in itha alile
should be attributed to the influence of plants on the reductitimecimount of
rainfall water reaching the soil surface, and to the useabénifor plant growth
through the root system which is located primarily in the lar@brizon of the
soil. Positive values of cross-semivariance indicate thatincrease in soil
moisture is due to rainfall. Negative values show that clamgsoil moisture
were related to another factor, probably water upflow from lower soil horizons
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Isotropic Variogram, z=0 m
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Fig. 36. Semivariograms (a, b), cross-semivariogram (e}l @stimated mathematical models of
water content and rainfall for spring barley
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Isotropic Variogram, z=0 m
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Fig. 37. Semivariogram (a) and cross-semivariogram (b), estinated mathematical models of
water content and rainfall for rye

The ranges of the temporal relationship of cross-semivarianmecipitation
and soil moisture were the largest below the arable horizoheyBahowed a
correlation radius of from 2 to 6 days in the soil horizon from =® z=0.1 m
and an over 80-day correlation below the level of z=0.1 m. Ryeecharacterized
by an over 5-day correlation on the soil surface, over 30-dayeahext level
studied, and an 80-100-day radius of correlation at deeper sizibhgr The bare
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plot had an approximately 3-day radius of reciprocal correlatiche soil layer
from z=0 m to z=0.2 m; below that level it increased to abowta®8, and at the
deeper level even exceeded 100 days.

Isotropic Variogram, z=0 m

20E-04

15E-04

10E-04

Semivariance

50E-051

00E+00 +—+—+—+——+— 1
0O 10 20 30 40 50 60 70

Separation Distance (day)

Isotropic Cross Variogram, z=0 m x Rainfall

0.04

0.02

Semivariance

0.00 1=

-0.02°
0 5 10 15 20 25 30 35 40 45

Separation Distance (day)

Fig. 38. Semivariogram (a) and cross-semivariogram (b), estimated mathematical models of
water content and rainfall for bare soil



Table 13.Cross-semivariogram parameters for water conteshivatidation statistics of kriging and cokriging timed for spring barley.

Barley Rainfall z=Ocm z=0.05m 2z=0.1m 2z=02m 3& z=04m z=05m z=0.8m
Model Lin Gauss Gauss Gauss Gauss Gauss Gauss Lin aussG
Nugget Co 25.72  0.0001 0.0001 0.00001 -0.0001 €100-0.0005 -0.0001 -0.0023
Sill Co +C 25.72  0.0566 0.0376 0.00992 -0.137 -v416 -0.2108 -0.069 -0.199
Range 43 6.76 3.81 2.2 91 91 89.92 83.9 88.4
R? 0.005 0.741 0.477 0.024 0.597 0.847 0.868 0.81 230.9
RSS 357 1.68E-3  1.45E-3 2.49E-3 1.17E-3 7.75E-4 4834 5.38E-4 1.79E-4
Kriging
Regression coefficient 1.057 0.996 0.994 0.989 3.02 1.01 1.014 1
Intercept -0.01 0 0 0 -0.01 0 0 0
SE 0.04 0.036 0.028 0.026 0.028 0.016 0.023 0.017
R? 0.904 0.912 0.947 0.953 0.949 0.982 0.965 0.98
SE Prediction 0.017 0.014 0.011 0.01 0.008 0.004 00&. 0.004
Cokriging
Regression coefficient 0.99 0.989 0.995 0.966 0.9830.993 0.996 0.999
Intercept 0 0 0 0 0 0 0 0
SE 0.036 0.036 0.028 0.026 0.025 0.016 0.023 0.016
R? 0.91 0.911 0.946 0.951 0.955 0.982 0.963 0.982
SE Prediction 0.016 0.015 0.011 0.01 0.008 0.004 006). 0.004

83
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Table 14.Cross-semivariogram parameters for water conteshivatidation statistics of kriging and cokriging timed for rye.

Rye Rainfall z=O0cm z=0.05m z=0.1m z=02m z30.3z=04m z=05m z=0.8m

Model Lin Gauss Gauss Gauss Gauss Gauss Gauss Gausauss
Nugget Co 25.72 0.00001 0.00588 0.0001 -0.0026 00.00-0.0019 -0.0044 -0.0025
Sill Co +C 25.72 0.01362 0.02706 0.0343 -0.1813 2 -0.-0.2127 -0.2088 -0.0456

Range 43 5.39 30.2 83.3 101 97 101 99.1 84.3
R? 0.005 0.506 0.364 0.373 0.748 0.863 0.839 0.81 07M.5
RSS 357 6.8l1E-4  7.54E-4 1.22E-3 5.04E-4 3.67E-49B4 4.93E-4 1.60E-4
Kriging

Regression coefficient 1.109 1.062 1.02 1.006 1.0121.008 1.008 1.033
Intercept -0.02 -0.01 0 0 0 0 0 -0.01
SE 0.044 0.023 0.027 0.015 0.023 0.014 0.015 0.059
R? 0.889 0.923 0.948 0.982 0.96 0.985 0.983 0.795
SE Prediction 0.015 0.011 0.008 0.004 0.007 0.004 .008 0.006
Cokriging

Regression coefficient 1.02 992 1.019 0.995 0.977 .99® 0.991 0.935
Intercept 0 0 0 0 0.01 0 0 0.02
SE 0.032 0.029 0.027 0.015 0.028 0.015 0.0014 60.04
R? 0.929 0.937 0.948 0.983 0.939 0.982 0.984 0.839

SE Prediction 0.012 0.009 0.008 0.004 0.008 0.005 .009D 0.005
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Table 15.Cross-semivariogram parameters for water conteshivatidation statistics of kriging and cokriging tned for bare soil.

Bare soll Rainfall z=0cm z=0.05m z=0.1m z=0.2m=03m z=04m 2z=05m z=0.8m
Model Lin Gauss Gauss Gauss Gauss Gauss Gauss GauBExp

Nugget Co 25.72  0.0001 0.00001 0.00001 0 0 -0.0004100001 -0.00197

Sill Co +C 2572 0.01172 0.01282 0.01182 0.0008 0@sQ@ -0.00347 -0.01407 -0.01231
Range 43 3.59 3.4 2.98 2.42 19.94 101 101 70.1
R? 0.005 0.229 0.542 0.588 0.115 0.031 0.432 0.615 3960.
RSS 357 1.88E-3 2.92E-4 1.64E-4 2.29E-5 4.14E-5 484 3.33E-5 4.62E-5
Kriging

Regression coefficient 1.052 1.139 1.066 1.021 1n.03 1.017 0.978 0.968
Intercept -0.01 -0.04 -0.02 0 -0.01 0 0.01 0.01
SE 0.083 0.084 0.052 0.046 0.053 0.05 0.112 0.139
R? 0.678 0.705 0.844 0.863 0.83 0.841 0.498 0.389
SE Prediction 0.02 0.011 0.009 0.005 0.005 0.004 004. 0.005
Cokriging

Regression coefficient 0.946 0.956 0.978 0.946 ®.94 0.972 0.867 0.768
Intercept 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.08
SE 0.069 0.054 0.043 0.048 0.05 0.046 0.086 0.098
R? 0.706 0.801 0.871 0.837 0.821 0.853 0.568 0.43
SE Prediction 0.019 0.009 0.008 0.005 0.005 0.004 .0040 0.005
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5.8. Estimation of soil moisture distributions with the method®f kriging
and cokriging

In the calculations conducted according to the methods igingr and
cokriging, soil moisture was chosen as the basic variable, angbifagon was
the auxiliary (secondary) variable. The determined semivamegnodels of soil
moisture and precipitation and the cross-semivariogram of soitune and
precipitation were used in the estimation of soil moisture. Medsialues of soil
moisture (dots), calculated values (solid line) and standard wesatbroken
line) for the surface horizon of soil z=0 m, for the three abjender study, are
presented in Fig. 39, 40, 41. The conformity of calculated andurezh values
was examined by means of linear regression equation, standardSesr@and
determination coefficients®RResults of the comparisons are presented in Fig. 42,
43, 44 and in Table 13, 14, 15. The statistics presented show goesnagte
between the measured values of soil moisture and the wadiesated with the
help of the two methods of calculation.

The kriging method permited fairly accurate estimation dfraoisture on the
basis of determined semivariogram and soil moisture valwsumed in prior
(Fig. 42a, 43a, 44a and Tables 13, 14, 15). However, the estimatethrst
deviation of kriging clearly indicated a considerable areangkrtainty that was
the greatest at the beginning and at the end of measurements.

The application of the cokriging method results in a slight improvement of soil
moisture estimations — in some cases the estimations wéne aame level as
with the kriging method but with a significant reduction of éihea of uncertainty
as expressed by standard deviation (Fig. 42b, 43b, 44b and Tablk$, 135).
Standard deviation was also small at the beginning and end of estimation.
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Fig. 39.Measured (dots) and estimated (solid line) - with kriging (a) and cokriging (b) methods -
values of soil moisture in the surface horizonaf 8 = 0 m in the spring barley plot. Broken liise
used to mark standard deviations of kriging andigaig.
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Fig. 40.Measured (dots) and estimated (solid line) - with kriging (a) and cokriging (b) methods -
values of soil moisture in the surface horizonaf 2 = 0 m in the rye plot. Broken line is used to
mark standard deviations of kriging and cokriging
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Fig. 41.Measured (dots) and estimated (solid line) - whnkriging (a) and cokriging (b) methods -
values of soil moisture in the surface horizonaf 2 = 0 m in the bare plot. Broken line is used t
mark standard deviations of kriging and cokriging
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5.9. Assessment of conformance of kriging and cokriging estimations

The assessment of conformance of soil moisture values estimath the
kriging and cokriging methods was performed with the help of dioss-
validation method. From the time series, data were removed engnae and, on
the basis of neighbouring data, soil moisture value was estiniait the point of
removal. The completion of the procedure for all the data lgesgielded a set of
calculated data equivalent to the measurement data. The measdredtimated
data are presented in a system of coordinates (Fig. 42, 43, 44)easttistical
parameters illustrating the goodness of conformance are mdsantables 13,
14, 15.
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Estimated, Water content

Fig. 42. Comparison of soil moisture values - measured adutated with the kriging (a) and
cokriging (b) methods for the plot with spring tesr(Water content — ).
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Solid lines represent the linear regression equations which fitiexd to the
measurement-calculation data. The broken line representedldtibnship. High
concentration of dots around the 1:1 axis and the overlapping aotiteline
with the broken line indicate improvement of estimation with to&riging
method as compared to the kriging method. The kriging method alss gbod
conformance of measured and calculated data, but with somewlsagedit
conformance of the linear regression equation to the 1:1 linestéhdard error

SE and the SE Prediction term, defined$B3/1- R? , whereSD = standard
deviation of the actual data (Table 13, 14, 15) were low and miisated good
conformance of the measured and calculated values. The figlhuwesalso that
the greatest range of soil moisture values in the surfadeohoduring the
vegetation season was observed in the barley plot, somewliadler in the rye
plot, and the smallest in the bare field.
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Fig. 43. Comparison of soil moisture values - measured adutated with the kriging (a) and
cokroging (b) methods for the plot with rye (Watentent — mm).
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Depth, z=0 m
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Fig. 44. Comparison of soil moisture values - measured adutated with the kriging (a) and
cokroging (b) methods for the bare field (Waterteon— mi m).

5.10. Conclusion

This part of the work was concerned with the assessment tértiporal and
spatial variability of soil moisture and thermal propertieshia soil profile in a
field with plant cover and without, using the methods of geostatistinalysis
and fractal theory.

The basic statistical parameters were calculated amgst shown that the
lowest and the highest values of soil moisture within thenggummer season
occurred in the bare field; the lowest in the surface boriand the highest in
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deeper soil layers. The greatest variability of soil nioéswithin the soil profile
was observed in the plots with plant cover, and the smallest in thadddre f

The geostatistical parameters determined showed the temporabldape of
moisture distribution in the soil profile, with the autocortiela radius increasing
with increasing depth in the profile. The highest values of ridus were
observed in the plots with plant cover below the arable horizon haridwest in
the arable horizon on the barley and fallow plots.

The fractal dimensions showed a clear decrease in valuésivereasing
depth in the plots with plant cover, while in the bare plots thee welatively
constant within the soil profile under study. Therefore, theycatdd that the
temporal distribution of soil moisture within the soil profikethe bare field was
more random in character than in the plots with plants.

The results obtained and the analyses indicate that the madistthie soil
profile, its variability and determination, are significardafjected by the type and
condition of plant canopy. The differentiation in moisture content beiviee
plots studied resulted from different precipitation interceptiord different
intensity of water uptake by the roots.

In calculations made with the help of the kriging and cokrigimeghods, soll
moisture was chosen as the basic variable and precipitatidheaauxiliary
(secondary) variable. Semivariogram models were determimresbfomoisture
and precipitation, and the cross-semivariogram of moisture anipipaon was
used for the estimation of soil moisture. The conformanceatdulated and
measured data was validated with the help of linear regrnesguations, standard
errors SE, and the determination coefficients e statistics presented indicate
good conformance between the soil moisture values measuredeuldted with
the help of the two calculation methods.

The method of kriging permitted a fairly good estimation of swisture on
the basis of the semivariogram and the soil moisture vateaesured beforehand.
However, the estimated standard deviation of kriging cleatypwed a
considerable area of uncertainty. The area of uncertaintytheagreatest at the
beginning and at the end of the measurements.

The application of the method of cokriging provided a slight imgmoent in
the estimation of soil moisture. Sometimes the estimationtseselre similar to
those obtained with the kriging method, but there was a signifiedniction of
the area of uncertainty as expressed by the standard deviatindafst deviation
was also low at the beginning and at the end of the estimation.
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6. INVESTIGATION OF SPATIAL VARIABILTY
6.1. Field experiment

In the case of the second object, the basic data considere@ itsultiy
originated from measurements of granulometric composition, planargnatter
content and exchangeable cation capacity (CEC) in the surfacermd@diz 10
cm) of soil in arable fields in the commune of Trzebieszéw [3BBE soil was
sampled into cloth bags (approx. 1.5 kg of soil per sample). The soil samples were
analyzed according to methods commonly used in soil science. @stune was
measured using the TDR meter (Soil moisture meter (TO&)oeeted and
pronanced by Institute of Agrophysics PAS Lublin, Poland) [216]. Qoeotly,
at the same sampling points, the soil was sampled into eylinti00 cr in
volume and 5 cm high, for soil moisture and density determinatiosdicg to
the gravimetric method. That latter measurement method was fosetthe
validation of data obtained with the reflectometric method (Y [3R4]. For soll
moisture determinations, soil samples were taken from selectdde fields,
from the arable horizon exclusively, in spring and in summereddiately after
harvest. The measurement points within the fields were llistd on a regular
grid (Fig. 45). The regular grid was marked out in the field whe help of
measuring tape, and selected reper points were determirtbdth&i help of
Trimble's GPS GeoExplorer 3 with the accuracy of approx. 1 m.

For each object the basic statistical parameters veteerined, i.e. the mean
value, standard deviation, coefficient of variability (CV), maximum andmum
values, as well as values characterizing the distributidgheofiven features, i.e.
skewness and kurtosis. Spatial characterization of the uthaler consideration
was performed with the geostatistical methods. The statissEmivariograms,
estimation of the soil features studied and their mapping weaéneltwith the
help of such software packages as the GeoEas, Staisttaiowin 2.21, GS+5
Demo GS+ 7 Demo, Surfer 8 Demo [91, 109, 114, 280, 281].
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Fig. 45. Location of measurement points on fields A andd&noted: T1-T6 transects from 1 to 6,
on field A point 0,0 corresponds to 22.5396036EF and 51.98515%N, on field B —
22.56809278AE and 51.98714389FN) [399].

6.2. Results of statistical analysis

The statistical parameters of the soil features studiedhe surface horizon
(0-10 cm) of arable fields A and B were calculated and comilédbles 16 and
17. The mean value is an especially significant measure dfethteal trend of
distribution of a given variable. Its reliability is incraag with the population of
the sample. It is known that with increasing variance of degtadliability of the
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mean value decreases. Standard deviations determined for thelesunder
consideration (Tables 16, 17) were, in most cases, signlficinter than the
mean values, which indicates that the mean values obtained epeesaentative

for the objects studied.
Table 16. Summary statistics of granulometric fraction, #@gigpH), organic mater content (OM)
and cation exchange capacity (CEC) in 0-10 cm l&yrecultivated field A [399].

Cultivated field A

Parameter % content of fractions  pH [KCI] pH [H,0] OoM CEC

1-0.1 0.1-0.02 <0.02

[mm]  [mm]  [mm] - - % cmol-kgt

ayer 0-10 cm

Number of points 150 150 150 150 150 150 150
Mean 48.8 37.2 14.0 3.905 4458 0.835 11.8
Variance 50.1 36.9 184 0.084 0.099 0.118 12.9
Standard deviation 7.08 6.08 4.29 0.29 0.314 0.344 3.59
Coefficient of variation 145 16.3 30.6 7.4 7.0 41.2 30.5
Skewness 0.811-0.419 -0.125 5.307 247 0.276 0.628
Kurtosis 4.298 4.446 2.646 44.47 1597 3.709 3.672
Minimum 34 16 3 3.56 3.93 0.014 3.69
25th %tile 44 34 11 3.78 4.27  0.650 9.22
Median 48 38 15 3.86 439 0.832 11.40
75th %tile 52 40 17 3.96 460 1.003 13.49
Maximum 75 54 25 6.49 6.59 1.800 23.80

Table 17. Summary statistics of granulometric fraction, &gidpH), organic mater content (OM)
and cation exchange capacity (CEC) in 0-10 cm l&yrecultivated field B [399].
Cultivated field B

Parameter % content of fractions pH [KCI] pH [HxO] oM CEC

1-0.1 0.1-0.02 <0.02

[mm] [mm] [mm] - — % cmol-kg'

Layer 0-10 cm

Number of points 50 50 50 50 50 50 50
Mean 54.7 345 108 4.18 4.81 0.804 10.3
Variance 57.1 455 23.0 0.143 0.173 0.076 14.6
Standard deviation 756 6.74 479 0.378 0.416 0.276 3.82
Coefficient of variation 138 195 444 9.0 8.6 34.4 37.0
Skewness 0.005 0.273 1.377 1.688 0.918 -0.123 1.164
Kurtosis 2.618 2.213 5.1 6.616 3.521 4.323 4.429
Minimum 39 22 4 3.75 4.21 0.1 4.53
25th %tile 49 30 7.5 3.93 4.51 0.668 7.57
Median 55.5 33 9.5 4.09 4.74 0.832 9.63
75th %tile 59.5 40 13 4.26 4.99 0.973 11.6

Maximum 72 49 26 5.69 6.06 1.675 23.2
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The content of granulometric fractions in the objects studiedrataer varied
in the scale of a field. In terms of mean values, the lowastd scontent
characterized the soil in the arable field A (48.8%), ardhilyhest — in field B
(average of 54.7%). The content of the silt fraction varigdinvthe range from
34.5% (field B) to 37,2% (arable field A), and that of clayoni 10.8% (field B)
to 14% (field A). Minimum values of sand, silt and clay cante field A were
34, 16 and 3%, and in field B were somewhat higher, i.e. by 5, 6 ahdrlijrt
field A. Maximum values observed in both the fields were 75-7@&sdnd, 54-
49% for silt, and 25-26% for clay.

Organic matter content in the soil of the arable fields lwasat about 0.8%.
The lowest and highest values of organic matter content w@iset a single
measurement point in the surface horizon were 0.1 and 1.8%.

Soil reaction in the fields was acid. The mean pH value inOti® cm
horizon, measured in KCI, was 3.91 and yOHapproximately 4.8. Minimum pH
values of soil samples were 3.6 (KCI) and 3.90} and the maximum values -
6.5 and 6.6, respectively (Tables 16, 17). The mean value of tha eatthange
capacity was approximately 11 cmolkghough in individual samples it varied
considerably (within the range from 3.7 to 28 cmofkg

Comparison of the values of standard deviation of particuanujpmetric
fractions, organic matter content, pH, and of the values of cati@hange
capacity (CEC) (Tables 16, 17) permits the conclusion th&irwihe fields the
scatter of the values was fairly similar.

Among the physical and chemical features in fields A and B, dhedt
variability, as expressed by the coefficient of variabi{i§V) characterized the
soil reaction pH, and the highest CV was recorded for te fchction content -
44%. A CV value similar to that for the clay fraction contewats characteristic
for the organic matter content and the cation exchange capdCE{Z)(
Considerably lower CV values than for the clay fraction contesre observed
for the silt (16-19%) and sand (14-15%) fractions.

Skewness, which characterizes the degree of distribution asyynmwith
relation to its mean value, was, in the case of the vasalohder consideration,
mostly positive — for some of the variables with rather madesgmmetry, for
others (mainly the soil pH and organic matter content) with iderable
symmetry. The silt fraction content and, sporadically, also the frkction
content and pH, showed a slight negative asymmetry. Kurtosis, which
characterizes the relative slenderness or flatness atrébdtion as compared to
the normal distribution (normal distribution kurtosis equals 3), stbowier most
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of the variables — values similar to the normal distrdnuti Relatively low
slenderness of distribution (kurtosis>3) was observed for gitamulometric
fractions of soil for all the data from the 0-10 cm horizon of tiabla fields. A
considerably greater slenderness of distribution was chasdicteof the soil
reaction, organic matter content, and cation exchange capacity.

6.3. Results of correlation analysis

Calculation of the linear correlation of the soil featunesler consideration
was performed at the level of significance p<0.05. The restilise calculation
are presented in Table 18 (statistically significant ¢atians are shown in bold
type). High and significant coefficients of correlation bet¢w the contents of
particular granulometric fractions in a given horizon indicateutual
interrelationships between those variables. Negative atioel was observed
between the silt and sand fractions content, and positive atiorebetween the
silt and clay fractions. Soil reaction values (pH in K&id pH in HO) were
highly and positively mutually correlated, and somewhat leghly and
negatively correlated with the silt fraction content and tlgamic matter content.
Organic matter content correlated with the silt fraction aunt¢he cation
exchange capacity and the soil pH. The cation exchange capacilated with
the sand, silt and clay fractions content, the correlation with sand beiativeeg

Tabela 18.Correlation between soil physical properties ih0em layers [399].

Sand Sit  Clay r?gl ﬁ:) oM CEC
Sand 1.00-0.90 -068 005 004 -007 -028
Silt 100 030 -011 -010 010 0.14
Clay 1.00 007 008 —-0.02 040
pH KCl 100 098 014 006
pH H,O 1.00 012 005
oM 100 045
CEC 1.00

Correlation coefficients were determined for p €3.and N=464. Significant correlations are
written in bold type.
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6.4. Results of geostatistical analysis

Measurement data from the fields were analyzed for thetia®ieof trends in
the spatial distribution of the soil features under consideratiothel case of the
fields, it was found that the equation parameters showlat slegreasing trend in
one direction and an increasing trend in the other, or an absértcends.
Organic matter content and cation exchange capacity alsdaydsgp no
discernible trends in their data. In the case of those obijezaa be assumed that
the features under consideration meet the process stationagjiasirstationarity
condition required in geostatistical analysis [122]. Moreover,distributions of
values of the soil features under study were mostly clos¢hdéo normal
distribution.

The spatial variability of each of the soil features stda a given object
was analyzed with the help of semivariograms. The values dfetsigsills and
spatial autocorrelation ranges were determined, and semiariagodels were
fitted to empirical data, together with the determination naddel fitting
parameters (Table 19). The quality of fitting of semivarogtheoretical models
to the emprical data was determined with the help of the detdrom@efficient
R? and the sum of residual squares sum RSS, taking into consideratiaiuge
from the models and the empirical values of the semivariogrigi. values of
the determination coefficient (up to®R 0.85) and low values of the residual
squares sum (RSA0?°) found in a great majority of cases, indicate that the
theoretical models can be fitted to the empirical semivaaiogrwith a fairly high
level of goodness.

Spatial correlation of the features under consideration was fauedchost all
of the objects. The form of the spatial correlation in the arable horizon estlym
spherical. Exponential relationship was observed only in the ohsiree
variables. The semivariogram parameters indicate thatlee¢ here with the
nugget effect. This indicates that the variability of that@ires under examination
is less than the minimum soil sampling separation adopted en figid
measurements. Values of semivariance saturation are compar#idevalues of
variance determined in the classical way (Tables 16, Igly&ing those values
we can conclude that within the fields there were no cteads in the variation
of the soil features under study. The values of semivariogedoration were a
derivative of the content of particular fractions. The higjlvalues were observed
for the sand fraction content, markedly lower for silt, andidiaest for the clay
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fraction content. In the case of soil reaction (pH) and orgamitemcontent,
somewhat higher values of semivariance were observed dnXigian in field B.
Also the cation exchange capacity semivariance values eostawfield A were
considerably higher than those in field B.

Analyzing the ranges of spatial correlation of the physical ahemical
properties, one can conclude that they were related to the sittee afbject
studied. The highest values of spatial autocorrelation wleserved in the arable
field A where it varied from 78 to 500 m, while in field B it svcom 12 to 310
m.

Table 19.Semivariogram parameters of soil properties ifD@th layer for cultivated field A and B
[399]

OM CEC
Parameter Sand [%] Silt[%] Clay[%]pH[KCI] pH[H,0] [m* nm?¥ [cmol-kg?

Cultivated field A, layer 0-10 cm

Model Exp. Spherical Spherical Spherical Spheric8pherical  Spherical
Nugget [ } 27.08 28 11.24 0.07 0.08 0.107 10.5
Sill[]? 54.17 38 22.24 0.09 0.1 0.12 15
Range [m] 77.9 350 450 150 150 150 500
Cultivated field B, layer 0-10 cm

Model Spherical Spherical Exp. Spherical  Spheric@xp. Spherical
Nugget [ 1.18 0.01 5.66  0.00004 0.0001 0.0161 0.33
Sill[]2 28.74 17.42 11.33 0.011 0.042 0.0546 6.33
Range [m] 12.2 13.5 28.4 12 12 310 16.6

Exp. — Exponential.

6.5. Estimation and preliminary analysis of maps

The parameters and semovariogram models determined for the |paiaili
features, and the measurement data from the particular rep@sirpoints, were
used — with the help of the kriging method — for the plotting of nedEpatial
distribution of the features studied within a given objed.(&6, 47, 48, 49), and
for the determination of the values of errors involved in tht@énation. The
estimation error, for all the soil features under study, did xotexl 10% of the
feature under analysis. Close to the measurement pointsrtrs erere much
smaller, at about 1-2%, and the greatest estimation errorsed@irthe edges of
the measurement grids.

Generally, it can be stated that there is an overall sitgilaetween layers in
terms of distribution of a given feature. Even if the distiitn image is not
exactly the same, areas can be found that are similamis t&f values and retain
greater or lesser similarity of one layer to another. Mapshef content of
granulometric fractions display overall similarity of distition due to the fact
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that the sum has always to be 100%, but their values vary. \illere2is more
sand, there has to be less silt, and the other way round. Howensigering the
fact that the maps have been estimated with the help of itliagkmethod from

the measurement points, it is certainly possible to find amdese the sum of
fraction content is not always equal to 100%. But the very idestiiin of the

spatial distribution of particular fraction provides so much iicant information

(on the range of occurrence of specific values, directionsedf thanges), that it
can be used in taking management decisions concerning a given area.

Considerable differentiation in the spatial distribution b& tcontent of
granulometric fractions and pH values was observed in theofabe selected
fields, even though their surface area was from 1 ha to 1.8 hanarwbuold have
expected greater homogeneity of the soil in the fields @8g 47, 48, 49). This
shows the sense of taking a greater number of samples whemidatgrthe
properties (features) of soil in a given field, and the netyestdetermination of
the spatial distribution of the features.

It should be added that the visualization of the field of vatighe physical
and chemical properties of soil and of the values of estimatian permits the
identification of those areas in the field in which the numbesanfipling points
should be increased (or reduced) in subsequent measurements ifobrither
representation of a value studied to be burdened with anrat@xceeding the
level assumed by the experimenter.
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6.6. Conclusion

The attempt, undertaken in this work, at determination (assessofetht®
spatial variability of selected properties of soil on thelesed a field in the
commune of Trzebieszéw showed that there exists a distinct, thoumgd,var
variability of the values of the soil properties under adergition (content of
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granulometric fractions and organic matter, soil reactioditgciand cation
exchange capacity) as well as their spatial correlation.

The granulometric composition of soil (percentage content of paticul
fractions), low content of organic matter, as well as — tertain extent — the
chemical properties of the soil in the fields were relatid the predominant soil
type of the area (sandy soils developed from loose sands, wiskiyy,
overlying loam, or loamy). The average content of sand fractes %%, silt -
32%, clay - 13%, and organic matter - 0.8%. The soil reaction eild®raneutral
(average pH about 4.4), and the average value of cation exateagty was 11
cmol-kg®. However — while retaining a generally similar distributionl arder of
values — considerable differentiation of the features wasrebd, both within the
larger field and in the smaller one, where due to the smaaer one could have
expected a greater homogeneity of the soil.

From among the granulometric fractions, the greatest sa#Htteslues was
characteristic of the sand content, and the smallest -ayf 8tatter of the values
of organic matter content was similar in both fieldssAthe values of pH and
cation exchange capacity had similar scatter of values in both fields.

Spatial correlation was observed for all the soil featuresspective of which
field was considered — the longer or the shorter one. The dbrthe spatial
correlation was spherical in most of the cases, and exponentsne. The
ranges of spatial correlation were mainly related to the scate afidject, but also
to the type of variable.

The spatial distributions (maps) of the soil features studi¢iipaged on the
basis of point measurements, show their differentiation withgiivan object
(commune, cultivated field) and may constitute the basis oidintification of
objects that require the application of various cultivatioasnees (e.g. liming or
fertilization).

6.7. Soil moisture in field transects

Soil moisture was considerably differentiated along the lengttheoffields
(Fig. 50, 51). Especially sharp changes in soil moisture ets®rved at the
beginning ands at the end of field A, related primarily to thiefref the terrain.
The beginning of the field was a slight slope, and the end — a hollowlat lpart
of the field (between 18Dand 408 meter) was characterized by uniform soil
moisture content values. In the case of field B, a fairlyaumif soil moisture
content was observed in the first part of the field, and a dersile increase in
soil moisture content in the other. The distribution of salisture in this field
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was also related to the relief of the terrain. A slight slems observed in the

initial part of the field, then the slope angle increased ithéurpart of the field
which ended with a trough.
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Fig. 50. Water content transects T1-T6 through field A viifdnd equations also shown
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The presented runs of soil moisture content indicate its irecrelang the
length of the field. The increases were examined with the dethe lines of
linear and quadratic trends which were obtained from the fittinlgeoéquation to
all the data for a given field. The moisture content in field A;caspared to field
B, was characterized by a lower directional index of the liyeapout one order
in value). The trend lines and their directional indexes inditetexistence of a
small deterministic component in the soil moisture content id Agand a much
bigger one in field B. If this simple trend analysis can be lbhasis for the
conclusion that the condition of process stationarity is fulfitethe case of field
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A, in the case of field B this condition will probably not be fulfilled. Thewfthe
trends were removed from the data obtained frolusfia and B in order to meet the
condition of process stationarity and to find duhe trend affected the values of the
semivariograms.

6.8. Basic statistics of soil moisture

The mean values of soil moisture in the two fields did not differ significan
the difference was less than 1% (Table 20). Also similar tlia scatter of soil
moisture values in the two fields., as were the coeffisien variability of soil
moisture — about 35%. The soil moisture distributions had right-ekedness
and were characterized by considerable slenderness — kurtogskdwhess 0,
kurtosis 3 — normal distribution [91]).

Table 20.Summary statistics of water content on field AaBd for all data from A and B [401]

Parameters Field A Field B All data from fields AdaB

N — Number 156 55 211
Mean 0.140 0.149 0.143
Std. Dev. 0.049 0.052 0.050
Coef. Var. 35.1 34.6 35.0
Skewness 1.313 1.006 1.225
Kurtosis 6.097 4.366 5.549
Minimum 0.038 0.064 0.038
25th %tile 0.111 0.121 0.114
Median 0.137 0.143 0.139
75th %tile 0.156 0.162 0.158
Maximum 0.316 0.321 0.321

6.9.Semivariance

Calculations of semivariance of soil moisture were madéwo fields — field
A and field B. Semivariance was calculated on the basdire€t measurement
data, as well as data in which the linear and quadratic tledi®een removed
from the original measurement data. To semivariance valuestdeéd in this
way, mathematical models of semivariograms were fittedbl€T&®1). For
comparative purposes, the classical variance was also calcatatgpresented. In
the case of field A, the presented semivariance was astindirectly from the
basic semivariance equation, while in the case of field B thedatdized



110

semivariogram was presented. The latter semivariogrammjalsyed bacause the

scatter of semivariance values from the basic sammaivce equation was extensive
enough to make it difficult to fit a model of semiilogram. The standardization of
semivariogram markedly improved the fitting of thedel of semivariogram to the

empirical data and permitted the determinatioreafigariogram parameters.

Table 21.Parameters and models of semivariograms for watgeat in fields A and B [401]

. Anisotropy
Data Model Nugget Sill Range -
Ratio Angle

Field A
T Exp. 0.000570 0.00180 95.3 2 48.01
DTL Exp. 0.000671 0.00155 109.0 2 49.11
DTQ Exp. 0.000542 0.00147 104.6 1.998 54.33

Field B
T Sph. 0.37 0.87 110 1.023 109.9
DTL Sph. 0.72 0.5 100 1 0
DTQ Sph. 1 0.1 110 1 0

Denoted: Exp. — exponential, Sph. — spherical,data with trend, DTL — linear detrending, DTQ —
guadratic detrending.
The existence of spatial correlation of soil moisture canters found in both

objects. In field A exponential character of the spatial cdioglavas observed,
while in field B the correlation was spherical. The valuethe range of spatial
correlation presented in Table 21 were similar at about 100 nihéwffective
radii of spatial correlation in field A was about three-fdidttof the radii in field
B — this results from the definition of range for the exponemtiadlel. In both
cases the nugget effect was observed. Detrending of data ifflomAf did not
cause any significant changes in the nugget values, whileinase of field B
data detrending caused a significant increase in the nudgesyv@able 21). The
existence of nugget values in both objects under study inglittzé the adopted
sampling step was too large. Considering the nugget values liecaoncluded
that the sampling step in field A was somewhat better chosarirttfeeld B. In
field A, the semivariogram saturation parameters (sill \®laecreased a little
with increasing order of trend equation applied, while in fielthd/tremained on
the same level if linear trend was used, and slightly deaeagh quadratic
detrending. The somewhat higher semivariance in field B than dhe \of
classical semivariance, and its decrease with increasaey of trend, indicate
the existence of trend of higher order. However, due to the conyplekit
calculations involved in higher order detrending, no further analyses were made



111

A mild anisotropy was found in the soil moisture distributioriéld A, and a
lack of such anisotropy in field B. Anisotropy is expressed e the ratio of
the maximum to the minimum range of semivariogram. The valwmisbtropy
was 2 in field A and 1 in field B. The preferential direatiof anisotropy in the
case of field A was about 50° and did not change with detrendirnie loase if
field B the direction was 109° for original data and de@da® 0° after the
detrending.

6.10. Comparison of soil moisture values — measured and estimated with
the kriging method

Conformance checks for soil moisture values measured glisgith the TDR
meter and estimated with the kriging method were performed thrawaglysis of
the determination coefficients?Rmean values of differences in measured and
estimated data, medians of absolute values of differences meéaslues and
median of measured moisture, and root mean square of the ritfereof
measured and estimated values (Table 22). In Table 22 boldvpeised to
indicate the bast conformance of measured and estimated soil moistig® val

Table 22. Summary statistics of water content measured andaed by kriging method [401]

Data =3 Mean M.A.D. RMS

Field A

T 0.673 0.00024 0.0201 0.0286

DTL 0.668 0.00025 0.0203 0.0289

DTQ 0.663 —0.00012 0.0208 0.0292
Field B

T 0.419 0.00065 0.0216 0.0397

DTL 0.426 0.00057 0.0212 0.0395

DTQ 0.414 —0.00100 0.0250 0.0408

Denoted: T — data with trend, DTL - linear detregdi DTQ — quadratic detrending,

1 n
’_‘(nzzij Z =2,-2,. Z5 Zy
mea i=1 'where & ~ % %ei; ¢l "€l calculated and measured value in pgint— number

d, d.=

of samples, (M.AD. = 2) —
Mean Square.

Considering the simple regression analysis of soil moistumsg dields A
and B (Fig. 50, 51), analysis of semivariograms (Table 21)pandmeters of
conformance of the measured and estimated values of soil mdiBale 22) we
can assume that the results obtained on the basis of originalremastidata in

Z 152
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field A are sufficient for representative descriptiontlé spatial correlation of
soil moisture in that field and for mapping the soil moisture 8istion. In the
case of field B, the same is fulfilled for data after linear delirey.

6.11. Soil moisture distribution maps

Estimated maps of soil moisture distribution based on origirasorement
data, and on data after linear and quadratic detrending, are presented in Figures 52
and 53.
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Fig. 52. Spatial distribution of water content for field Apper figure with measured data, central
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Soil moisture distributions in field A did not differ signifitly. The
parameters describing the conformance of measured and estirahtes v that
field (Table 22) confirm the above observation. Greater diffage in soil
moisture distributions were observed in field B. Soil moisturwiligions based
on measurement data were much more similar to distributionts hmear
detrending than to those with quadratic detrending. In this caseathmeters of
conformance indicate the best data fitting for data with lineaeniding.

The analyses and the parameters of conformance, their increasesasddor
particular steps in the analyses, may be provide the badigdoe decisions as to
whether extract the deterministic components from measurementodatat.
Considering the much greater complexity of calculations involvechvitends
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are included in analyses, one can arrive at the conclusiomtkatrie cases the
analyses can be limited to measurement data alone, prinmasiyuations where
linear regression shows only trace trends in the data undésis. One should,
however, keep in mind the acceptable values of estimation error.

6.12. Conclusion

Presented above are the results of analyses of the spaigbity of soil
moisture content, based on measurement data obtained with the tedpT@IR
meter and on data from which the deterministic component, i.e. laedr

quadratic trends, had been eliminated. The study was conducted on twdemlltiva

fields, immediately after harvest. In both the objects simikiability of soil
moisture was observed (coefficient of variability was abow@)35The study
showed the existence of deterministic components (trends) in thenaisiure
distribution in both the fields, as well as spatial correlatibthe soil moisture.
The character of the spatial correlation was relatddeize of the object — the
longer field was characterized by exponential correlation andhbger field —
spherical, the effective range of the spatial correlaiiging three times greater in
the longer field. The estimated maps of soil moisture didtabun the longer
field were similar in spite of data detrending, while in ¢hee of the shorter field
the maps were different. Conformance between measurementadetalata
estimated with the kriging method depended on the value of themitsic
component in the data under analysis.

7. GENERAL CONCLUSION

We have presented a new methodology for the analysis of ageonoiegical
data. Wavelet transform as a time-frequency analysis métheaety efficient in
finding localized intermittent periodicities. Cross wavedmalysis and wavelet
coherence are powerful methods for testing phase relationshipseetwo time
series. Empirical Mode Decomposition used as a data-driven sabfittaring
method allows to decompose the original time series into a nurobgronents
that can be studied separately with modern power spectrum methods.
efficiency of the above approach has been confirmed using thetdyetti
Method. We have shown that the heat transfer regime atrtbeilainterface can
be studied very accurately with these methods.

In the methodological aspect, the study showed that at thedftegmognition
of the variability of soil features (especially staton ones) a large sampling

The
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population is required. Such a recognition will permit the deterioimaif the

necessary (optimal) number of samples for the determinationef sxhi features
(less stationary and dynamic) — a number that will be adapted tzale of the
object and to the soil variability.

The presented study on the spatial variability of physical argmnical
properties of soil have both a cognitive and a practical ctesrd@ecognition of
the soil on the scale of the commune permitted the determinaitibre general
status of the features and physical properties of the soibrndie@tion of
parameters describing their spatial variability, and mappihg spatial
distribution of the features. In the case of a cultivated figle knowledge of the
spatial variability of the physical and chemical propertidssoil and —
contextually — of the spatial variability of crops permits ttetermination of the
actual conditions of plant growth and crop yielding on a given abjéds can
constitute the basis for the formulation of agrotechnical recamdations aimed
at the optimisation of tillage through the identification ofagréhat require e.qg.
additional liming, or organic or mineral fertilization.

If we know the spatial distribution of particular physical aclemical
properties of soil (maps of distribution of soil featuresg @an employ more
rational management of natural resources and energy inputsrecedigr
particular tillage operations. The ecological effectsuth knowledge of spatial
variability may be highly significant. First of all, we mayevent excessive
accumulation of chemical components where their content in thés salready
sufficient, and thus economize on the costs of chemical fersliand reduce the
costs of soil reclamation that would be necessary if such sixeesccumulation
has occurred. Moreover, known character of spatial variabiliylg provide the
basis for more accurate description of physical processes and mrenom
occurring in the environment through 2D and 3D modelling of mas®aad)y
flux within a given system under study.

It should be emphasized that the study of spatial variabilitghgsical and
chemical properties of soil constitutes the foundations of giceciagriculture,
currently being promoted and implemented in the most economicalgloged
countries of the world. In Poland, studies of this type are more naome
frequently developed and applied, although still predominantly in tieatiic
circles. Therefore, there appears a need for an integagi@dach to studies of
this type, so that the results can be implemented and utilizedriculture and
environmental protection as fast and as fully as possibld. dfial we should
make use of the results of earlier studies (already publishescientific
publications and reports) and of data accumulated in data bases, lalthesg
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are not very numerous as yet. Special attention should be pafbge soil
properties that are stable and do not change significantly oxagrperiods of
time, but are difficult to determine. Data concerning the phydeatures and
properties of soils that are characterized by dynamic chemegalso valuable and
should be collected in databases. Irrespective of whether theg &am
literature or originate from current data acquisition paotg and studies, they
may constitute material for comparisons, search for correlatmnsng one
another and with the stable features of soils, and for tempaiatioa analyses.
Access to databases is currently difficult (sometinmpossible) and requires
separate discussions and decisions. Our progress in thatiailiof research
results accumulated so far for purposes of precision agriculture and envitahme
protection will depend on how fast the scientific circles anddéwsion makers
can solve the problem.
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