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1. INTRODUCTION 

Spatial and temporal variability of the natural environment is its inherent and 
unavoidable feature. Every element of the environment is characterized by its 
own variability, and at the same time each element affects one or more other 
elements of the environment. In recent years, special attention has been turned to 
environmental variation as a phenomenon that comprises processes leading to 
given physical, chemical or biological conditions [1-4,7,27,28,38,39,86-101,201-
232,329-365]. One of the kinds of variability in the natural environment is the 
variability of the soil environment [9-13,20,35,44,118-141,272,286-321,338]. The 
variability is related to the spatial and temporal variation of soil-forming factors 
and to human activity. At the same time, the natural and the anthropogenic 
components of the spatial and temporal variability of soil are not sufficiently 
identified, and – so far – the least known. To the latter we should assign, among 
other things, excessive compaction of soil within the arable layer and beneath it, 
resulting – as a side effect – from the application of agricultural machinery, which 
has a significant effect on the hydro-physical, thermal and air relations in soil [64, 
105,170,253,289,388,403,416,442]. Likewise with the chemical properties of soil, 
including its reaction (pH) and cation-exchange capacity [399]. Consequences of 
the failure to consider the spatial variability of the soil environment, and therefore 
the conditions of growth and development of plants, may include irrational  tillage 
(not adapted to the existing conditions), plant development below optimum, 
meaningful losses in crop yields, excessive costs of fertilization and liming of 
soil, long-term retention of chemical components in the soil and their release in 
the form of gases or salts etc., as shown by studies conducted, among others, in 
the USA, Sweden, Great Britain, Australia, and also in Poland [6,8,34,116,117, 
124,150, 154,156,171,207,229, 247, 286,393-398,411,418,426].   

To acquire better and deeper knowledge and understanding of the temporal 
and spatial variability of the physical, chemical and biological features of the soil 
environment, we should determine the causes that induce a given variability. The 
primary causes of the natural variability may be sought in the geomorphological 
form of the terrain (mountains, uplands, flat lands, valleys, faults, terraces, detrital 
fans, dunes, etc.), among the soil-formation factors, i.e. the climatic, hydrological 
or biological factors and their interactions, and in the differences in the lithology 
of the parent rock from which he soil was formed. The intensity of erosion, 
sedimentation and weathering processes may also affect the temporal and spatial 
variation of soil properties [222,311,355-360].  
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It should be emphasized that the study of the spatial variability of the physical 
and chemical properties of soil provides the very foundations for precision 
agriculture that is now being promoted and implemented in the most 
economically developed countries [212,246,251,444].  

 Types of soils (including their genesis and primary features) are documented 
on the national, regional or administrative unit scale by means of soil maps with 
various degrees of generalization [21,83-85,186,252,362,365,384,419], and – 
though to a lesser extent – with the help of data banks [113,131,172,381,382, 
452]. These provide a basis for the formulation of conclusions concerning the 
greater or lesser variability of soils within a given area [209,214,222,392-
399,416-419,446]. The variability of soil properties within an arable field, even 
though it exists [11,12,18,19,392], is often underestimated not only by farmers, 
but also by science. As a rule, the soil in a field is considered to be homogeneous, 
which permits the study of its physical and chemical parameters to be restricted to 
a single measurement point, and at the same time suggests the unification of all 
the applied tillage and other agricultural measures. This kind of approach causes 
that in the field of studies on the spatial variability of soil properties, conducted so 
far in Poland, there have been no significant research publications. The least 
known is the spatial variability of the properties of soil environment in the sense 
of mathematical-physical description and, moreover, the natural and 
anthropogenic components of the spatial variability of soils are not sufficiently 
distinguished [166,282,400,425].  

Among the features of soil we can distinguish those relatively stable (little 
changing with time) and those of a more dynamic character which change with 
the occurrence of certain external factors (soil tillage, meteorological conditions). 
Relatively stable features of soil include its texture and mineral composition; 
examples of those variables in time are the soil pH or organic matter content; an 
example of a feature with strong dynamics is the soil moisture content.  

1.1. Objective 

The objective of this work was to investigate and describe the spatial and 
temporal variability of selected physical and chemical properties of soil, 
determination of the extent of the variability and its significance in the soil 
environment using geostatistical methods and time series analysis.  
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2. GEOSTATISTICAL METHODS 

2.1.Introduction  

The processes of mass and energy exchange taking place in soil are dynamic 
processes. This is affected primarily by the soil itself – a dispersive and multi-
phase medium – as well as by plants and the meteorological conditions. Actual 
soil objects studied under natural conditions are conveniently treated as systems 
connected to the environment that can be described by means of suitable 
functions of time or as systems being functions of time and spatial coordinates. 
With the physical structure of the systems studied not fully known (usually), their 
responses and contacts with the environment (inputs, outputs) can be analyzed in 
terms of static random processes, or treated as a form of interrelationship of 
random fields [36-75,127-137,145-185,199,236-285,404]. Statistical methods 
extensively used for the description of soil objects pre-assume that observations 
are independent from one another, which hinders their accurate description and 
analysis. In environmental studies we deal with observations which, by their very 
nature, are dependent on one another. The dependence is interesting as such (from 
the cognitive point of view) [17-22,142,144,204,213,288,319,364,368,369-
384,389,405-457]. In such a case, the chosen methods of random field analysis 
which, among other things, constitute the foundations for the mathematical 
apparatus of geostatistics, have a fundamental importance for the study of 
variation of soil parameters. As we are aware, our knowledge on a phenomenon 
or on the features studied with respect to a medium is fragmentary, as it relates to 
areas or, rather, points that have been sampled [9,24-85,322-379]. What we do not 
know is what actually happens in between the measurement points. The need to 
acquire knowledge on those areas resulted in the emergence of a new branch of 
science – geostatistics.  

Most of the features of the natural environment show continuity. The study of 
the physical properties of soil can be conducted with the help of classical 
statistics, using for the purpose the distribution function and the relevant 
statistical moments, or with the help of the autocorrelation function on which 
geostatistics is based. However, when we use classical statistics, we leave out 
information concerning the space from which data have been collected, and the 
data is irretrievably lost. On the other hand, basing on classical statistics we can 
solve the problem of sample population required for the determination of a given 
feature with specific accuracy. Geostatistics, which bases on observations that are 
similar within a certain proximity, indicates that they have to be mutually 
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correlated [315,345]. It represents a methodology that permits the spatial or 
temporal analysis of correlated data. Its basic tool is variogram analysis which 
involves the study of the variogram function of a specific variable physical value 
or of a soil property under study. The variogram function, with its specific 
parameters (nugget value, threshold and correlation range), presents the behaviour 
of the variable under study, called the “regionalized variable”  [75,136,137,225, 
426], and thus permits the formulation of conclusions concerning areas that are 
not represented by any measurement data [46, 53,57,62,63,70,126,159,179,190, 
205, 214,377]. 

The concept of mathematical description of natural structures characterized by 
geometric heterogeneity of linearity or surface may be conducted with the help of 
the fractal theory [6,8,10,14-16,346-352]. The fundamental concept in this theory 
is the concept of the fractal dimension D [29,42,43,161,167,176,220,221] which 
expresses the effective geometric dimension of linearity, surface or volume of a 
structure under study. According to the fractal theories, the value of D is a global 
value and therefore characterizes the whole object studied [275-278,291-297, 383, 
396]. The value may assume values within the range of 1 ≤ D ≤ 2 for linear 
sections and 2 ≤ D ≤ 3 for surfaces, and can be interpreted in terms of spatial 
organisation of the feature or process under study, i.e. it provides information on 
how far the feature/process is determined or has a random character.  

Comprehensive study of the dynamics and correlation of many physical 
properties of soil and the close-to-ground layer of atmosphere combined is now 
possible thanks to the existence of suitable methods of measurement, availability 
of automatic data acquisition and analysis systems, and the adaptation of 
geostatistical methods and the fractal theory to the temporal and spatial analysis 
of data variability.  

2.2. Regionalized Variable 

A basic concept in geostatistics is the regionalized variable introduced by G. 
Matheron [225]. The variable, distributed in space, forms a certain random field 
and is used for the description of phenomena occurring within a specific zone. 
The duality of the regionalized variable is manifest in two aspects – deterministic 
(structured) and random (erratic) after  Pannatier [280,281]:  

“- The structured aspect is related to the overall distribution of the natural 
phenomenon, 

- The erratic aspect is related to the local behavior of the natural phenomenon.  
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The formulation of a natural phenomenon must take this double aspect of 
randomness and structure into account. A consistent and operational formulation 
is the probabilistic representation provided by Random Functions. 

A Random Function is a set of Random Variables {Z(x) | location x belongs to 
the area investigated} whose dependence on each other is specified by some 
probabilistic mechanism. It expresses the random and structured aspect of a 
natural phenomenon in the following way : 

- Locally, the point value z(x) is considered as a Random Variable. 
- This point value z(x) is also a Random Function in the sense that for each 

pair of points xi and xi +h, the corresponding Random Variables Z(xi) and Z(xi +h) 
are not independent but are related by a correlation expressing the spatial 
structure of the phenomenon.” 

2.3.Semivariogram 

As has been mentioned earlier, in studies on the soil environment we deal with 
observations that are mutually correlated [2,47,48,60,61,66,126,129,138,140]. 
Statistical methods assume that observations are independent from one another, 
which hinders the accurate description and analysis. We know that our knowledge 
on the processes studies is fragmentary as it relates to areas, or rather to points 
that have been observed. We do not know what happens within the areas in 
between the observations [70,90,94,96-120,248-268,315,325,387,436-450]. 
Acquisition of knowledge about those areas is in the focus of interest of numerous 
branches of science, including agrophysics [392-400,419]. The probability, 
confirmed by numerous observations, that next to a point with a specific value of 
a certain variable there are points with similar values of that variable indicate that 
the values must be mutually correlated. The basis for the calculation of data so 
correlated is the method of variogram function analysis, and more specifically a 
half of the expected value of differences of the value Z(x) of the variable in point 
x and value Z(x+h) in a point removed by the vector h. The semivariogram 
presents therefore the spatial or temporal behaviour of a given variable which is 
also called the “regionalized” variable. The variable has its random aspect which 
accounts for local irregularities, and its structural aspect which reflects the overall 
tendency or trend of the phenomenon (trend) [122]. Analysis of such a variable 
consists in the identification of the structure of variability. Three stages can be 
identified in the analysis: preliminary examination of collected data and 
evaluation of basic statistics, calculation of empirical variogram of the 
regionalized variable under analysis, and fitting a mathematical model to the 
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course of the empirical variogram. This requires the knowledge of the first two 
statistical moments of the random functions ascribed to a given phenomenon: the 
first moment (the mean) [281],  

( )[ ] ( )xmxZE =       (1)  

and the second (variance, covariance, semivariogram – semivariance) 

 ( ){ } ( ) ( )[ ]{ }2xmxZExZVar −= .     (2) 

If the random variables of Z(x1), Z(x2) have variance, they also have 
covariance which is a function of position x1, x2:  

( ) ( ) ( )[ ] ( ) ( )[ ]{ } ( ) ( ){ } ( ) ( )2121221121, xmxmxZxZExmxZxmxZExxC ⋅−⋅=−⋅−=   (3) 

Semivariogram γ(x1,x2) is defined as a half of the variance from the difference 
of random variables {Z(x1)– Z(x2)} [281,424,425]: 

( ) ( ) ( ){ }2121 2

1
, xZxZVarxx −=γ .     (4)  

It is also required that the process under study be stationary, i.e. does not 
change its properties with a change in the beginning of the temporal or spatial 
scale. In the stationarity condition is met, the random function Z(x) is defined as a 
stationary function of the second order. Moreover, it is expected that [188, 189, 
281]: 
- the expected value exists and does not depend on the position of x  

( )[ ] xmxZE ∀= ,     (5) 

- for each pair of random variables {Z(x), Z(x+h)} there exists covariance 
dependent only on the separation vector h  

( ) ( ) ( ){ } xmxZhxZEhC ∀−⋅+= ,2   (6) 

- the stationarity of covariance implicates the stationarity of variance and 
semivariogram 

( ){ } ( )[ ]{ } ( ) .,02 xCmxZExZVar ∀=−=   (7) 
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It can be shown that there is a correlation between covariance and the 
semivariogram [281]: 

( ) ( )( ){ } ( ){ }[ ] ( ){ }[ ]
( ){ } ( ) ( ){ } ( ){ }[ ]

( ) ( ) ( )
( ) ( ) ( )hChC

hChC

xZExZhxZEhxZE

mxZEmhxZEmxZhxZEhC

γ
γ

−=
−=

+⋅+−+−

−+−+=−⋅+=

0

2022

2

222
22

22222

(8) 

- for all the values of vector h the difference {Z(x+h) – Z(x)} has finite variance 
and does not depend on x  

( ) ( ) ( ){ } ( ) ( )[ ]{ } xxZhxZExZhxZVarh ∀−+=−+= ,
2

1

2

1 2γ . (9) 

When the value of vector h equals zero, the value of semivariance is also equal 
to zero. The semivariogram is symmetrical with relation to h:  

γ(h)=γ(–h).      (10) 

The experimental semivariogram γ(h) for the distance h is calculated from the 
equation [124,191,267,281,323,380, 402,424]: 

( ) ( ) ( ) ( )[ ]
( )

∑
=

+−=
hN

i
ii hxzxz

hN
h

1

2

2

1γ    (11) 

where: N(h) is the number of pairs of points distant for each other by h. The 
equation illustrates the differentiation of deviations of the value of a given feature 
or physical value z from the equation of trend with relation to the distance 
between the measurement points. Three characteristic parameters are 
distinguished for the semivariogram: the nugget effect, the threshold, and the 
range.  

If the semivariogram is an increasing function beginning not from zero but 
from a certain value, the value is called the nugget effect. It expresses the 
variability of the physical value under study with a scale smaller than the 
sampling interval (it can also result from low accuracy of measurement). The 
value, reached by the semivariogram function, from which no further increase of 
the function is observed, (approximately equal to the sample variance) is called 
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the threshold or sill, while the interval from zero to the point where the 
semivariogram reaches 95% of the constant value is called the range. The last 
parameter expresses the greatest distance at which the values samples are still 
correlated.  

To semvariograms determined empirically, the following mathematical 
models are fitted [91, 280,281]:  
- The linear isotropic model describes a straight line variogram. Note that there is 
no sill in this model; the range A0 is defined arbitrarily to be the distance interval 
for the last lag class in the variogram. The formula used is [109]: 

( ) 











+=

0
0 A

ChChγ     (12) 

- The spherical isotropic model is a modified quadratic function for which at some 
distance A0, pairs of points will no longer be autocorrelated and the 
semivariogram reaches an asymptote.  The formula used for this model is: 
 

( )









>+

≤
























−⋅+

=

00

0

3

00
0 5.05.1

AhCC

Ah
A

h

A

h
CC

hγ , (13) 

- The exponential isotropic model is similar to the spherical in that it approaches 
the sill gradually, but different from the spherical in the rate at which the sill is 
approached and in the fact that the model and the sill never actually converge. 
The formula used for this model is: 

( ) 01 0
0 >














−⋅+=

−
heCCh A

h

γ    (14) 

- The Gaussian or hyperbolic isotropic model is similar to the exponential model 
but assumes a gradual rise for the y-intercept. The formula used for this model is: 
 

( ) 01

2

2
0

0 >
















−⋅+=
−

heCCh
A

h

γ    (15) 

where: γ(h) semivariance for internal distance class h, h – lag interval, C0 – 
nugget variance ≥ 0, C – structural variance ≥ C0, A0 – range parameter. In the 
case of linear model there is no effective range A – is set initially to the separation 
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distance (h) for last lag class graphed in the variogram. In the case of the spherical 
model the effective range A = A0. In the case of the exponential model the 
effective range A = 3A0 which is the distance at which the sill (C + C0) is within 
5% of the asymptote. In the case of the Gaussian model, the effective range A = 
30.5A0 which is the distance at which the sill (C + C0) is within 5% of the 
asymptote. 

When fitting a model to empirical semivariograms, the least squares method is 
most frequently used.  

2.4. Trend  

In the regionalized variable we can distinguish the random or erratic 
component – ε(x), which covers local irregularities, and the structural component 
– m(x), which reflects the overall tendencies of the phenomenon (trends). The 
components are closely related to each other through the decomposition equation 
[71,122,424]: 

( ) ( ) ( )xmxxz += ε     (16) 

Like above, analysis of such a variable consists in the identification of the 
structure of variability through examination of the collected data and evaluation 
of the basic statistics, calculation of the empirical semivariogram of the 
regionalized variable under consideration, and fitting a mathematical model to the 
course of the empirical semivariogram. It is also required for the process under 
study to be stationary, i.e. not to change its properties with a change in the 
beginning of a spatial or temporal scale. The existence of trends in a data set 
causes a change in the properties of the feature together with scale change. In 
such a case fulfilling the stationarity condition requires the removal of the trend – 
m(x) from the data set [114]:  

( ) ( ) ( )xmxzx −=ε .    (17) 

For a linear run of values the trend equations are as follows:  

( )
( )
( ) 2

210

10

0

xaxaaxm

xaaxm

axm

++=

+=
=

    (18) 
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When we have a surface trend with x, y coordinates, the trend equations are as 
follows: 

( )
( )
( ) feydxcxybyaxyxm

cbyaxyxm

ayxm

+++++=
++=

=

22

0

,

,

,

  (19) 

where: a, a0, a1, a2, b, c, d, e, f – parameters. 
After the elimination of the trend from the data set, the resultant random or 

erratic component should be characterized by the mean value of zero and by finite 
variance.  

The empirical semivariogram − γ(h) for the distance h is calculated from the 
equation: 

( ) ( ) ( ) ( )[ ]
( )

∑
=

+−=
hN

i
ii hxx

hN
h

1

2

2

1 εεγ    (20) 

where:: N(h) is the number of pairs of points distant by h. The equation illustrates 
the differentiation of deviations of the values of a given features or physical value 
ε(xi) from the trend equation depending on the distance between the measurement 
points.  

2.5. Standardized semivariogram  

Semivariance values calculated from the classical equation are sometimes so 
scattered that it is difficult to them a semivariogram model. Better model fit can be 

achieved through the standardization of the semivariogram sγ [281]:  

( )
hh

s

h

σσ
γγ

⋅
=

=0

 .    (21) 

In such a case we must additionally calculate the standard deviation of the random 
variable at the origin of vector h ( 0=hσ ) and the standard deviation of the value of the 

random variable for a point distant by h ( hσ ).  
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2.6. Cross-semivariogram 

Regionalized variables are assigned to various physical properties of the soil 
medium. The variables are usually correlated with one another, to a lesser or 
greater degree. Assuming that the condition of stationarity of the second order is 
met, and that the values of variables z1 and z2 have cross-covariance defined as 
[123,193,230,407,434]: 

( ) ( ) ( ){ } 212112 mmhxZxZEhC −+⋅=    (22) 

and 

( ) ( ) ( ){ } 211221 mmhxZxZEhC −+⋅=    (23) 

and cross-semivariogram as: 

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ } xxZhxZxZhxZEhh ∀−+⋅−+== ,
2

1
22112112 γγ . (24) 

When m1 and m2 are the expected values E{ Z1(x)} and E{ Z2(x)} then, taking the 
above relations we can write the cross-semivariogram as: 

( ) ( ) ( ) ( ) ( )hChCChh 2112122112 0222 −−== γγ    (25) 

The empirical cross-semivariogram − γ(h) for the distance h is calculated from 
the equation: 

( ) ( ) ( ) ( )[ ]
( )

( ) ( )[ ]hxzxzhxzxz
hN

h ii

hN

i
ii +−⋅+−= ∑

=
22

1
1112 2

1γ  (26) 

where N(h) is the number of pairs of points with values of [z1(xi), z1(xi+h)], [z2(xi),  
z2(xi+h)], distant by h. When calculating the cross-semivariogram, the number of 
z1 and z2 values need not be even. Like in the semivariogram, in the cross-
semivariogram three basic parameters are distinguished: the nugget, the sill, and 
the correlation range. Also, mathematical functions are fitted into empirically 
determined cross-semivariograms. 

The obtained mathematical functions of semivariograms and cross- 
semivariograms can be used for the spatial (temporal) analysis of autocorrelation 
or for the visualization, through estimation, of the physical value under 
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consideration in space with the kriging or cokriging methods [30-33,91,127-129, 
200,281]. 

2.7. Kriging  

Estimation of values in places where no samples have been taken can be 
conducted with the help of an estimation method called the kriging method 
[40,41,55,58,77,80,164,223,270,320,363,412-415,420-432]. The method yields 
the best non-biased estimation of point or block values of the regionalized 
variable under consideration Z(x). With this method we also obtain the minimum 
variance in the process of estimation. Kriging variance values depend on the 
situation of samples with reference to the location under estimation, on the weight 
assigned to the samples, and on the parameters of the semivariogram model.  

The estimator of kriging is a linear equation expressed by the formula [30-33, 
424]: 

( ) ( )i

N

i
io xzxz ∑

=

∗ =
1

λ      (27) 

where:  N is the number of measurements, z(xi) – value measured at point xi, 
z*(xo) – estimated value at the point of estimation xo, λi – weights. If z(xi) is the 
realization of the random function Z(xi), the estimator of the random function can 
be written as: 

( ) ( )i

N

i
io xZxZ ∑

=

∗ =
1

λ .     (28) 

The weights assigned to samples are called the kriging coefficients. Their 
values change with the changing sampling situation and with spatial changes 
expressed by the variable under estimation. The weights assigned to samples as 
selected so as to achieve the minimal mean-square error. The error is called the 
kriging variance σk

2 and can be calculated for every sampling situation and 
estimation area configuration. The fundamental problem in the determination of 
the random variable is the finding of the weight λi. The weights are determined 
from a system of equations after inclusion of the condition of estimator non-bias 
[269,424]: 

 ( ) ( ){ } 0=−•
oo xZxZE     (29) 
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and its effectiveness: 

 ( ) ( ) ( ){ } min2 =−= ∗
oook xZxZVarxσ .    (30) 

After substituting the estimator of the weighted mean to the expected value we 
get:  

( ) ( ){ } ( ){ } ( ){ } 0∑∑ =−=−=−∗

i
i

i
oiioo mmxZExZExZxZE λλ . (31) 

As can be seen from the above equation, the expected value equals zero when:  

1
1

=∑
=

N

i
iλ .      (32) 

while substituting to the variance the random variable estimator we can show that 
[424]: 

 ( ) ( ) ( ) ( )∑∑∑ −+=
i

oiiji
i j

jiok xxCCxxCx ,20,2 λλλσ   (33) 

or (through semivariance): 

( ) ( ) ( )∑∑∑ +−=
i

oiiji
i j

jiok xxxxx ,2,2 γλγλλσ .   (34) 

Minimization of variance can be achieved by means of the Lagrangin 
technique, where N equations of partial differentials are equal to zero [424]: 

( )
0

22

=







 − ∑

i

i
iok x

λ∂

λµσ∂
,      (35) 

where: µ is the Lagrangin factor. After the differentiation and reduction of the 
equation we can arrive at the solution: 

( ) ( ) 02,2,2 =−+− ∑ µγγλ oi
j

jij xxxx .   (36) 

Including the condition for sum of kriging weights, we obtain the system of 
equations:  
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Solving the above system of equations we determine the kriging weights – λi. 
The weights permit also for the determination of the estimated random function 
Z* and its variance from the formula: 

 ( ) ( )∑
=

+=
N

i
oiiok xxx

1

2 ,γλµσ .    (38) 

2.8.Cokriging 

Cokriging is a specific method for the analysis of random fields. It consists in 
the determination of covariance and reciprocal covariance as well as the cross-
semivariogram function for specific soil parameters Z1 and Z2. The main 
advantage of the method described is the possibility of indirect reconstruction of 
the spatial variability of soil features, the measurement of which is difficult and 
expensive, through field analysis of other soil parameters, easier to determine 
with standard measuring equipment, or of improving the estimation of one of the 
variables under consideration on the basis of another variable.  

Estimation of values at sites where no samples have been taken, xo, can be 
made with the help of the estimation method known as the cokriging method. The 
mathematical basis for cokriging is the theorem on the linear relationship of the 
unknown estimator Z2

*(xo) expressed by the formula [265, 283, 407, 424]: 

( ) ( ) ( )j

N

j
ji

N

i
io xZxZxZ 22

1
211

1
12

21

∑∑
==

∗ += λλ ,   (39) 

where: λ1i and λ2j are weights associated with Z1 and Z2. N1 and N2 are numbers of 
neighbours of Z1 and Z2 included in the estimation at point xo. Cokriging weights 
are determined from a system of equations with the inclusion of the condition of 
estimator non-bias [407]: 

 ( ) ( ){ } 022 =−∗
oo xZxZE     (40) 

and its effectiveness: 
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 ( ) ( ) ( ){ } min22
2 =−= ∗

oook xZxZVarxσ .    (41) 

After the substitution of the estimator of weighted mean to the expected value we 
obtain: 
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As can be seen from the above equation, the expected value equals zero when: 

0
1

1
1 =∑
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j
jλ    (43) 

After substitution of the estimator to the variance we obtain: 

 ( ) ( ){ } ( ){ } ( ) ( ){ }ooooock xZxZExZExZEx 22
2
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Substituting to the variance the estimator of random function we can show that 
[411]: 
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Minimization of variance can be achieved according to the Lagrangin 
technique in which N1 and N2  of equations of partial differentials are equal zero 
[407]: 

( )
0

2

2

22
2

=







 − ∑

l

l
lock x

λ∂

λµσ∂
,      (46) 



 20

and 
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where: µ1 i µ2 are Lagrangin factors. After the differentiation and reduction of the 
equation, and taking into account the condition for the sum of cokriging weights, 
we obtain the system of equations:  
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Solving the above system we determine the cokriging weights – λi. The 
weights permit also the determination of the estimated random function Z2* and 
its variance from the formula [407]: 
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2.9. Fractal dimension 

Temporal or spatial runs obtained in the course of agrophysical measurements 
are manifested in the form of irregular shapes. Such irregularity (chaos) can be 
treated in two ways: as a deviation from an ideal condition – the classical 
statistical approach, or secondly, as a disordered run bound with intrinsically 
inseparable features. It can be assumed that the study of such a disordered run will 
yield useful information not only on the run itself, but also about the object from 
which it originated. Irrespective of the scale of measurement,  runs of this type 
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can be analyzed with the help of semivariograms. This statement results directly 
from the assumptions of geostatistics. Another useful tool that can be employed in 
the analysis of irregularities is the fractal theory which, by definition, deals with 
just such objects [67,68,72,98,112,158,168,308,312-314,324,385,386].   

Studies performed so far indicate that there are no direct methods for the 
determination or estimation of the fractality of actual objects [173-175, 
208,209,303]. Therefore, such properties of objects are sought that can 
incorporate in their structure the features of natural fractals, or features that can be 
related to the definition of fractals.  

In recent years, fractal analysis has been used not only for the description of 
the geometry of materials, but also for the study of spatial variability of the 
properties of a porous medium, including – among other things – the texture of 
the medium, its electric conductivity, penetrometric resistance, density, content of 
different salts in soil, or the effect of the colloidal fraction on soil erosion [5, 
23,26]. The fractal dimension was determined through the slope index of a 
semivariogram plotted in the logarithmic system of coordinates.  

In this study, the fractal dimension D was determined basing on the 
semivariogram from the formula [43]:  

2
2

H
D −= ,      (50) 

where: H is the slope of the semivariogram line, plotted in the logarithmic system 
of coordinates.  

3. METHODS AND OBJECTS OF THE STUDY  

Measurements of soil moisture and density were conducted with the help of 
the gravimetric method. Soil moisture was also measured with the help of a 
moisture meter operating on the reflectometric principle of measuring the 
dielectric constant of a porous medium (TDR). Thermal properties of soil were 
determined through the application of the statistical-physical model of thermal 
conductivity and of the empirical formulae for thermal capacity and diffusivity.  

3.1. Reflectometric method for soil moisture measurement 

The principle of operation of the TDR meter is based on measurement of the 
propagation velocity of electromagnetic waves within the medium under study 
(soils) at steady transmission line parameters [216,217,218,342,343,417]. The 
propagation velocity is expressed by the ratio of the velocity of light in vacuum to 
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the square root of the dielectric constant of the medium studied. The dielectric 
constant of a given soil depends primarily on the content of water in a unit of soil 
volume and can be described, with sufficient accuracy, with a third order 
polynomial.  

In practice, soil moisture measurement with the TDR method is reduced to 
measurement of the time necessary for electromagnetic wave to penetrate the 
medium, from the moment of entering the medium (where the first reflection 
occurs), along the needle probe to its end (where the wave gets reflected for the 
second time). With help of a certain set of equations, the measured time of wave 
propagation is converted to the water content in a volumetric unit of the soil.  

The TDR meter [216,217,218,342,343,417] is made up of a microprocessor 
controlled meter with a matrix graphic display, battery supplied, and a probe 
connected to the meter. Probes of various lengths of stem made of PCV (2 cm in 
outer diameter) are tipped with steel pins 10 cm long and with 1.6 cm spacing. 
The instrument measures moisture within water content range of 0%-100% with 
the accuracy of ±2% and a resolution of 0.1%. The duration of a single 
measurement is under 10 seconds.  

3.2. Determination of thermal properties of soil  

Under steady state conditions and in uniform and isotropic medium heat flux 
density q (Wm–2) is proportional to temperature gradient ∂T/∂z (Km–1) measured 
along the direction of heat flow: 

z

T
q

∂
∂λ−= .      (51) 

The proportionality coefficient λ (W m–1 K–1) called thermal conductivity is a 
characteristic of thermal conductivity of the given medium. Determination of the 
thermal conductivity and its spatial distribution in the soil is very difficult since it 
is a porous medium. Therefore, the methods for determination of the thermal 
conductivity based on other and easily measured properties are useful.  
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Fig. 1. Schematic diagram of the statistical model construction, a) unit volume of soil, b) the system 
of spheres that form overlapping layers, c) parallel connection of resistors in the layers and series 
between layers. 

In our study we used the statistical-physical model of soil thermal conductivity 
[390]. This model is based on the terms of heat resistance (Ohm’s law and 
Fourier’s law), two laws of Kirchhoff and polynomial distribution [88]. The 
volumetric unit of soil in the model (Fig. 1a) consists of solid particles, water and 
air, is treated as a system made up of the elementary geometric figures, in this 
case spheres, that form overlapping layers (Fig. 1b).  

It is assumed that connections between layers of the spheres and the layer 
between neighbouring spheres will be represented by the serial and parallel 
connections of thermal resistors, respectively (Fig. 1c). Comparison of resultant 
resistance of the system, with consideration of all possible configurations of 
particle connections together with the mean thermal resistance of given unit 
volume of soil, allows the estimation of thermal conductivity of soil             
λ (W m–1 K  – 1 ) according to the equation [390]: 
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where: u is the number of parallel connections of soil particles treated as thermal 
resistors, L is the number of all possible combinations of particle configuration, 
x1, x2 ,..., xk – the number of particles of individual particles of a soil with thermal 

conductivity λ1, λ2 ,..., λk and particle radii r1, r2 ,..., rk, where ux
k

i
ij =∑

=1

, 

j=1,2,...,L, P(xij) – probability of occurrence of a given soil particle configuration 
calculated from the polynomial distribution: 

 

a) 
 

b) c) 
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The condition: ( ) 1
1

==∑
=

L

j
jxXP  must also be fulfilled. The probability of 

selecting a given soil constituent (particle) fi, i = s, c, g, in a single trial was 

determined based on fundamental physical soil properties. In this case sf , cf , 

and gf  are the content of individual minerals and organic matter – φ−= 1sf , 

liquid – vcf θ=  and air – vgf θφ −=  in a unit of volume, φ  – soil porosity. 

So far, investigations showed that to calculate soil thermal conductivity the 
conductivities of main soil components can be used [390]. They are: quartz, other 
minerals, organic matter, water and air. Their values of thermal conductivity and 
relations to temperature are presented in Table 1.  

Table 1. Values and expressions for parameters used in calculating the thermal conductivity of soils 
(T in oC). 

Source a Parameters b  
(W m-1 K-1) 

Expression, value b 

 λq, 9.103 - 0.028 T 
2 λmi, 2.93 
2 λo, 0.251 
1 λw, 0.552 + 2.34⋅10-3 T - 1.1⋅10-5 T2 
1 λa, 0.0237 + 0.000064 T 

a 1. [162];  2. [78], b thermal conductivity of: quartz λq, other minerals, λmi, 
organic matter, λo water or solution, λw air, λa.  

Parameters of the model were defined earlier on the basis of empirical data 
[390,391].  

The agreement between predicted and measured results was determined with a 
mean square error (σb) and relative maximum error (ηb): 

( )
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ff
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i
cimi

b

∑
=

−
= 1

2

σ ,    (54) 

where: fmi is the measured value, fci is the calculated value, k = n - 1 if n < 30 and 
k = n n > 30, n – number of data.  
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The relative maximum error was calculated using the following equation:  
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ff
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Also regression equations of the thermal conductivity and determination 
coefficient R2 were developed.  

Predicted thermal conductivity values were compared with measured data on 
the Fairbanks sand, Healy clay, Felin silty loam, Fairbanks peat and loam 
[78,390,391]. Regression coefficients were close to unity, however permanent 
factors in the equation were close to zero. Determination coefficients of the linear 
regression were high and ranged from 0.948 to 0.994. Mean square errors      
σ (W m–1 K–1) and relative maximum errors η(%) ranged from 0.057 to 0.123       
(W m–1 K–1) and from 12 to 38.3%. These data indicate good performance of the 
model in predicting the thermal conductivity.  

Volumetric heat capacity Cv (MJ m–3 K–1) was calculated using empirical 
formulae proposed by de Vries [78]: 

 ( ) 61019.451.20.2 ⋅++= wosv xxxC    (56) 

where: xs , xo , xw (m3 m–3) – are volumetric contributions of mineral and organic 
components and water, respectively.  

Thermal diffusivity α was calculated from the quotient of the thermal 
conductivity and volumetric heat capacity: 

vC

λα= .     (57) 

4. TEMPORAL VARIATIONS IN THE AGRO-METEOROLOGICAL DATA 

In this chapter we present some preliminary results for the analysis of 
temporal variations of agro-meteorological data. The novelty of our approach 
consists in the utilization of the following modern methods: 

• Wavelet transform (WT) 
• Empirical Mode Decomposition (EMD) 
• Multitaper Method (MTM) 
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4.1.The data 

The analyzed data were recorded by the automatic agro-meteostation 
manufactured by Eijkelkamp Company  (http://www.eijkelkamp.com/).  The 
station is shown in Fig. 2. 
 

 
Fig. 2.  The automatic agro-meteostation of the type 16.98. 

 
The following parameters are measured by the station: wind speed and wind 

direction, global radiation, air temperature, air humidity, soil temperature and 
precipitation. The wind data were not used in our analysis. The radiation sensor 
operates in a measuring range of 305-2800 nm with accuracy of 2.5%. The air 
temperature and relative humidity sensor with radiation shield measures 
temperature between –40°C and +60°C with accuracy of +/- 0.2°C, humidity 
between 0 to 100 % with accuracy better than 2%. The soil temperature sensor 
operates in a measuring range of –40°C and +60°C, accuracy 0.1°C at 0-50°C and 
0.2°C at –40°C till +60°C. The last one, the rain gauge of UV-resistant plastic, 
aerodynamic design, and with a tipping bucket has a resolution of 0.2 mm 
precipitation and a surface area of 507 cm2. 
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The data covering the period of May-June 2003 are shown in Fig.3. Here we 
focus ourselves on the variation of soil temperature since it influences strongly 
crop development and plant growth. It is well known that soil temperature 
depends on both the soil surface energy balance and on the thermal properties of 
the soil [37,79,89,160]. As it is seen in Fig. 3 the daily soil temperature variations 
follow closely the air temperature and solar radiation. However, the bad weather 
and heavy precipitations can destroy this synchrony and we observe the 
intermittent behavior in these parameters. Such an intermittency is the main 
obstacle in using classical methods for the analysis of that kind of data. In 
addition, seasonal variations in the data can not be extracted easily. These are 
perhaps more important than daily variations. Due to the above reasons we have 
to resort to the afore-mentioned more advanced methods of data analysis.  
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Fig. 3. The data set recorded by the agro-meteostation during May-June 2003. 
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4.2.Wavelet transform 

Wavelet transform is a method that allows studying time series simultaneously 
at time-scale or equivalently in time-frequency domain. It means that WT due to 
its local nature is able to analyze properly any localized variations in the data. 
This aspect makes the WT very useful in the analysis of nonlinear and non-
stationary time series. Most of the time or spatial series encountered in soil 
science belong to this category. 

Until now, the WT has not been widely used in the analysis of data in soil 
science. However, Lark with co-workers have shown in a series of papers that the 
WT should be considered as a standard tool in the analysis of various soil data. In 
a paper [187] the authors have shown how the wavelet transform can be used to 
analyze complex spatial variations of soil properties sampled regularly on 
transects. The paper can be treated as an introduction of wavelets to soil science. 
In another paper [192] they have studied variation and covariation in small data 
sets from soil survey. The data sets comprise measurements of pH and the 
contents of clay and calcium carbonate on a 3-km transect in Central England. In 
that paper they have used a variant of the WT, called the maximal overlap discrete 
wavelet transform (MODWT) developed in statistical community. Electrical 
conductivity of soil was analyzed using wavelets in a third paper [194]. Recently 
Lark’s group has widely studied an intermittent variation of nitrous oxide 
emissions from soils using wavelets [195,196,197,454]. In their most recent [198] 
the authors have successfully extended wavelet analysis to two dimensions. Every 
soil scientist seriously interested in using wavelets for the analysis of soil data 
should consult their paper.  

First we study the temporal variations in the data using Continuous Wavelet 
Transform (CWT). 

One of the most popular approaches in practice is the CWT based on the 
Morlet mother wavelet [374]. The popularity of this approach comes from the 
conceptual similarities to the Fourier orthogonal analyzing functions e-iωt.  

The Morlet wavelet (Fig. 4) is defined as follows: 

( ) 2/4/1
0

0
2

eei ηηωπηψ −−= ,     (58) 

where ω0 is dimensionless frequency and η is dimensionless time. To achieve the 
optimal localization in time and frequency usually ω0=6 is usually adopted. This 
choice also satisfies the admissibility condition. The Gaussian envelope          
exp(-η2/2) localizes the wavelet in time. Fourier frequency f and wavelet scale s 
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are not directly related. One has to rescale the result of wavelet analysis with a 
factor depending on the mother wavelet.  For the Morlet wavelet, the conversion 
formula has the form: 

2
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π

++
= s

f .      (59) 

For ω0=6,  s⋅f  is approximately one.  
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Fig. 4. The Morlet wavelet for ω0=6. Real part (solid line), imaginary part (dashed line). 
 

 The CWT of time series  (xn, n=1,…,N) sampled uniformly with step dt is 
defined as the convolution of xn with the scaled and normalized wavelet and is 
given by: 
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Since the above equation is a convolution its computation can be efficiently 
implemented in the frequency domain by using the FFT algorithm. The details are 
omitted here but they can be found in the cited literature [195,196,197,454]. The 

wavelet power is defined as 
2

)(sW X
n . The complex argument of  )(sW X

n can be 

interpreted as the local phase.  
The CWT has edge artifacts because the Morlet wavelet is not completely 

localized in time. These are taken into account by introducing the Cone of 
Influence (COI). The COI is the area in which the wavelet power caused by a 
discontinuity at the edge drops to e-2 of the value at the edge. 

The cross wavelet transform (XWT) of two time series xn and yn is defined as: 

*YXXY WWW = ,    (61) 

where: * denotes complex conjugation. Next, we define the cross wavelet power 

as XYW . Cross wavelet power reveals areas in the time-frequency plane with 

high common power. The complex argument arg(XYW ) can be interpreted as the 
local relative phase between xn and yn time series.  

We are often interested in the phase relationship between two time series. 
Following Torrence and Webster [375] we define the wavelet coherence of xn and 
yn  time series as: 
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where: S is a smoothing operator.  The wavelet coherence can be interpreted as a 
localized correlation coefficient in the time-frequency plane. The smoothing 
operator S has a form: 

))),((()( sWSSWS ntimescale=     (63) 

where: Sscale denotes smoothing along the wavelet scale axis and Stime smoothing in 
time. A suitable smoothing operator is given by Torrence and Webster  [375]: 
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,))6.0()(()( 2 nnntime scsWWS Π∗=    (65) 

where: c1 and c2 are normalization factors and  Π is the boxcar function. The value 
of 0.6 is the optimal for the Morlet wavelet. 

The wavelet coherence phase difference is given by the following equation: 
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The statistical significance of wavelet power can be estimated by comparison 
with the power spectrum of a first order autoregressive AR(1) process. This 
approach is based on the findings that many geophysical time series show red 
noise characteristics. The power spectrum of an AR(1) process is given by:  
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where: k is the Fourier frequency index and  α  autocorrelation at lag equal to 1.  
Torrence and Compo [374] showed that for a given background spectrum Pk, the 
corresponding wavelet power at each time n and scale s is distributed as: 
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where: ν is equal to 1 for real and 2 for complex wavelets, p is the desired 
significance (p = 0.05 for the 95 % confidence interval).  

Similarly, Torrence and Compo [374] have developed a formula for the joint 
distribution of the cross wavelet power to two time series with background power 

spectra X
kP  and Y

kP .  It is expressed here as a: 
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where: Zν(p) is the confidence level  associated with the probability p for the 
resulting probability density function defined as a square root of the product of 
two chi-square distributions. For ν = 2,  Z2(95%) = 3.999. 
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The wavelet and cross-wavelet transform were computed with the package 
available at http://www.pol.ac.uk/home/research/waveletcoherence/. 

4.3.The results of wavelet transform 

Fig. 5 show the CWT of the air temperature. The daily component is clearly 
seen. However, the seasonal component with a period greater than 128 hours for 
hours between 200 and 800 in the figure is much stronger. One can also notice the 
weak high-frequency component with the period of 8 hours. Fig. 6 show the CWT 
of the topsoil temperature. The similarities with the previous figure are obvious. 
One can note the reduced dynamics in the topsoil temperature variations. Both 
daily and seasonal components are of the comparable strength. High frequency 
variations are now shifted to the band around 12 hours. Fig. 7 shows the CWT of 
the solar radiation. Obviously, the daily component is strongest one. The seasonal 
component is the much weaker. One can also see a few little spots of the power 
along time in the band for 12 hours. In general, the daily course of the topsoil 
temperature follows closely the solar radiation for a given time. Fig. 8 show the 
CWT of the air humidity. The power variations with time for daily components 
are visible. Also long-term features are noticeable. The cross wavelet transform of 
the solar radiation and air temperature is shown in Fig. 9. The 5% significance 
level is shown as a thick contour. The arrows indicate the phase relationship 
between both time series. The time series are in-phase for arrows pointing right, 
anti-phase pointing left. As it is seen the air temperature is shifted in phase about 
45° as compared to the solar radiation. In addition, this shift is noticeably greater 
for seasonal components. Fig. 10 show the cross wavelet transform of the solar 
radiation and topsoil temperature. Accordingly, the phase shift is now about 60°. 

The above results agree qualitatively with the theory of heat transfer, since the 
air and soil respond with the delay to driving force, i.e., the solar radiation. Fig. 
11 show the cross wavelet transform of the solar radiation and air humidity. 
Comparing figures 9  and 11 one can conclude that the air temperature and 
humidity are in anti-phase. Moreover, the air humidity advances the solar 
radiation. According to the adopted convention, the phase shift is about –45°. 
Finally, Fig. 12 show the squared wavelet coherence between the solar radiation 
and air temperature. Again, the 5% significance level is shown as a thick contour.  
The coherence and constant phase relationship for daily and seasonal components 
are significant. We conclude that the cross wavelet analysis and wavelet 
coherence are powerful methods for testing causal relationship between two time 
series. 
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Fig. 5.  The wavelet transform of the air temperature. 

 
Fig. 6. The wavelet transform of the topsoil temperature. 
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Fig. 7. The wavelet transform of the solar radiation. 

 
Fig. 8. The wavelet transform of the air humidity. 
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Fig. 9. Cross wavelet transform of the solar radiation and air temperature. 

 
Fig. 10. Cross wavelet transform of the solar radiation and soil temperature. 
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Fig. 11. Cross wavelet transform of the solar radiation and humidity. 

 
Fig. 12. Squared wavelet coherence between the standardized solar radiation and air temperature. 
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4.4.Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) has been pioneered by Huang et al. 
[148,149] for analysis of nonlinear and non-stationary time series. It has gained a 
lot of popularity in data analysis and is widely considered as a major 
breakthrough in applied mathematics in the 20th century.  

This technique adaptively decomposes the given oscillatory signal into a few 
AM-FM components which are referred to as Intrinsic Mode Functions (IMFs). 
IMFs are calculated in an iterative procedure called sifting process. As a rule, the 
last IMF represents long-term trend in the data. It is worth to note that this is local 
and fully data-driven technique. The EMD is in fact a type of adaptive wavelet 
decomposition whose subbands are built up in accordance with the frequency 
content of the signal. 

The original signal can be reconstructed by summing up all IMFs. However, 
we are often more interested in partial reconstructions. In other words, we want to 
analyze various components of the given signal separately. For example, one 
usually needs to detrend the data or to perform some kind of filtering. One should 
note that this can be realized completely easily with the IMFs. Estimation of the 
trend in data or band-pass filtering is equivalent to summing up suitably chosen 
the mutually orthogonal pairs of IMFs. The above approach is adopted in the 
present analysis of soil temperature and humidity data. The time-frequency 
spectrum, a post-processing aspect of EMD, which is estimated with Hilbert 
transform, will not be considered here. 

The EMD  assumes  that IMFs should: 
(1) have the same number of zero crossings and extrema; 
(2) be symmetric with respect to the local mean 
Given a signal x(t), the EMD algorithm works as follows: 
(1) find all the extrema of x(t); 
(2) connect all the local maxima by a cubic spline as an upper envelope 

emax(t); repeat the procedure for the local minima to obtain the lower 
envelope emin(t); 

(3) compute the average m(t) = (emin(t) +emax(t))/2; 
(4) extract the detail d(t) = x(t) - m(t); 
(5) iterate on the residual m(t). 
In practice, the above main loop is refined by a sifting process, an inner loop 

that iterates step (1) to (4) upon the detail signal d(t), until this latter can be 
considered as zero-mean according to some stopping criterion. Once this is 
achieved, the detail is considered as the effective IMF, the corresponding residual 
is computed and only then algorithm goes to step (5). 
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In summary, the original signal x(t) is first decomposed through the main loop 
as 

 ),()()( 11 tmtdtx +=     (70) 

and the first residual m1(t) is itself decomposed as 

 ),()()( 221 tmtdtm +=     (71) 

so that 

∑
=

+=

=
++=

+=

K

k
Kk tmtd

tmtdtd

tmtdtx

1

221

11

)()(

...

)()()(

)()()(

   (72) 

Although the EMD principle is very simple and appealing and its 
implementation easy, the exact mathematical theory of this method is not 
available yet. Due to the lack of analytical formulas its performance analysis is 
difficult. In spite of that, the EMD is widely used in different branches of science 
as a one of the best methods for the analysis of non-stationary time series. 

The reconstruction of signal components is done in a process of visual 
inspection and selection of the appropriate IMFs. Although the selection criterion 
is a bit arbitrary, one can readily identify particular IMSs which correspond to a 
given sub-band. Finally, the signal components are restored by summing up the 
carefully selected IMFs. Let us emphasize that the above very simple procedure is 
equivalent to the adaptive sub-band filtering.   

We illustrate how the EMD works using the same data we have analyzed with 
the CWT. 

4.5.The results of EMD 

Fig. 13 show the EMD of the air temperature. As can be seen, the original time 
series is decomposed into eight IMFs. The reconstructed components, high-
frequency variations (C1), periodic (daily) variations (sum of C2 to C4) and long-
term (seasonal) variations (sum of C5 to C8) are shown in Fig. 14. The seasonal 
component is superimposed on the original time series, while the remaining 
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components are shown below in the figure. This same convention is used in 
subsequent figures. Note that the mean value of these two components is relative 
and equal to zero. Fig. 15 show the EMD of the topsoil temperature. In this case 
the high-frequency variations are not present. Of course, this is caused by greater 
thermal inertia of the soil as compared to the air. Fig. 16 show the two 
reconstructed components. The daily component comprises of C1 and C2 IMFs 
while the seasonal component the remaining IMFs (sum of C3 to C6). Fig. 18 
shows the EMD of the air humidity. In this case, one can observe readily an 
increase of the air humidity caused by the precipitation. Fig. 19 show the three 
reconstructed components of the air humidity. The high-frequency component 
comprises of C1 IMF, the daily component (sum of C2 to C4), the seasonal (sum 
of C5 to C8). Note that the daily component is additionally shifted to the level –
50 % for presentation clarity. Finally, the EMD of the solar radiation is shown in 
Fig. 20 and the reconstructed components in Fig. 21. The visible valleys in the 
course of solar radiation are caused by the weather breakings. This intermittent 
behavior is instantly reflected in other measured quantities. The EMD of the solar 
radiation contains of nine IMFs. The high-frequency component comprises of C1 
IMF, the daily component (sum of C2 to C4), the seasonal component (sum of C5 
to C9). The daily component is additionally shifted to the level -1.5 kW/m2 for 
presentation clarity.  

The heat transfer regime at the air-soil interface can be studied with details by 
using the Empirical Mode Decomposition as demonstrated above. Two main 
factors play a major role here - solar radiation and intermittency in the weather. 

The dynamics of the air and topsoil temperature variations can be represented 
on the so-called phase-space plots. Fig. 17 shows such a plot for the daily and 
seasonal reconstructed components. As can be seen the dynamical picture of both 
variatiations is rather complex. 

It is worth to note that such representation is very useful in qualitative 
assessment of the heat transfer regime at the air-soil interface. 
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Fig. 13. The Empirical Mode Decomposition of the air temperature. 
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Fig. 14. The reconstructed three components of the air temperature. 
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Fig. 15. The Empirical Mode Decomposition of the topsoil temperature. 
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Fig. 16. The reconstructed two components of the topsoil temperature. 
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Fig.  17. Phase space plot of the air and topsoil temperature, (a) reconstructed daily components, (b) 
reconstructed seasonal components. 
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Fig. 18. The Empirical Mode Decomposition of the air humidity. 
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Fig. 19. The reconstructed three components of the air humidity. 



 47

 

120 130 140 150 160 170 180
-1

0

1

kW
/m

2

Solar Radiation

120 130 140 150 160 170 180
-0.5

0

0.5

C
1

120 130 140 150 160 170 180
-1

0

1

C
2

120 130 140 150 160 170 180
-0.5

0

0.5

C
3

120 130 140 150 160 170 180
-0.2

0

0.2

C
4

120 130 140 150 160 170 180
-0.2

0

0.2

C
5

120 130 140 150 160 170 180
-0.1

0

0.1

C
6

120 130 140 150 160 170 180
-0.1

0

0.1

C
7

120 130 140 150 160 170 180
-0.1

0

0.1

C
8

120 130 140 150 160 170 180
0.25

0.3

0.35

Day of year

C
9

 
Fig. 20. The Empirical Mode Decomposition of the solar radiation. 
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Fig. 21. The reconstructed three components of the solar radiation. 
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4.6.The Multitaper Method 

Usually, the power spectrum of a time series is estimated as the squared 
absolute value of its Fourier Transform. This simple approximation is called the 
periodogram. To reduce leakage in the spectral estimation, a time series is often 
windowed before applying the Fourier Transform. Although windowing reduces 
the bias, it does not reduce the variance of the spectral estimate. The multitaper 
method [290,371] is designed to reduce spectral leakage. First the dates are 
windowed with different, orthogonal tapers, and next spectra for all the tapers are 
averaged. The resulting multitaper spectral estimator is superior to the 
periodogram in terms of reduced bias and variance. There are some similarities 
with the Welch method of modified periodogram. 

The multitaper spectrum estimator is given by: 
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where:  αk  is the corresponding weighting factor, N is the data length and wk(n) is 
the k-th data taper used for the spectral estimate Sk(f), which is also called k-th 

eigenspectrum. The tapers are orthonormal, i.e., 0)()( =∑ nwnw jkn
 for j≠ k 

and equal to 1 for j = k. The discrete prolate spheroidal sequences (dpss) or 
Slepian sequences are usually chosen as tapers because of their good leakage 
properties. The number of tapers L is always chosen to be less than 2NW, where 
W is expressed in units of normalized frequency, i.e., 0 < W <  ½. The Slepian 
sequences maximize the spectral concentration of the window main lobe within   
[-W,W]. 

The multitaper cross spectral transform for time series xn  and yn  is given as 
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where: 
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and similarly for yn.  The multitaper coherence is defined here as: 
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and phase difference is given by: 
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We have used the improved matlab scripts for the computation of both the 
multitaper spectrum and coherence. These scripts were delivered by Peter 
Huybers and are available in the Matlab Central archive or in his home page 
http://web.mit.edu/~phuybers/www/Mfiles/index.html. 

It is worthwhile to note that these scripts use a fast approximation to compute 
the 95% confidence limits for a chi-squared distribution and computes the 
equivalent degrees of freedom as given by  Percival and Walden, 1993, p256 and 
p370 [290]. Also the adaptive weights αk is determined iteratively (see above, 
pp.368-370). 

4.7.The results of  the Multitaper Method 

We have shown that the adaptive sub-band filtering of a given time series can 
be implemented readily with the EMD. How efficient is this technique? We 
answer this question by comparing the MTM power spectra of both the original 
time series and the reconstructed components. Fig. 22 shows the power spectrum 
of the air temperature. The background spectrum really resembles the red noise, 
since the power increases at low frequencies. There are apparent three distinct 
peaks in the spectrum. The strongest peak corresponds to the diurnal cycle; the 
next ones have periods of 12 and 8 hours. The high-frequency noise is also 
apparent. Fig. 23 shows the reconstructed daily components of the air and topsoil 
temperature. These components are quite similar. However, one can also notice 
minor differences in their course.  
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Fig. 22. The multitaper power spectrum density of the air temperature. 
 
Fig. 24 shows the MTM spectrum of the daily component of the air 

temperature. It is evident that low- and high-frequency power is diminished. Fig. 
25 shows the high-frequency component of the air-temperature. The MTM power 
spectrum of this noisy component is shown in Fig. 26.  Obviously, this confirms 
again that the EMD is highly efficient when one tries to filter out or isolate signal 
components. 

Fig.27 shows the coherence and phase difference for the daily components of 
the air and topsoil temperature. We draw our attention to the following 
frequencies, 0.04, 0.08 and 0.12 (cycles/delta t). Almost perfect coherence is seen 
for the main variation, still high for variation at frequencies 0.08 and 0.12. Notice 
also the progressive phase difference at these frequencies. 

Fig. 28 shows the seasonal components of the air and topsoil temperature. 
These are also quite similar. It is also apparent that the soil accumulates the 
thermal energy especially for days 145 to 175. Fig. 29 shows the coherence and 
the phase difference for the seasonal components. The coherence is also high and 
phase difference is increasing with the frequency.  The above results agree well 
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with the wavelet analysis. However, we should emphasize here that the combined 
EMD-MTM analysis enables much deeper insight into the thermal regime at the 
air-soil interface. 
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Fig. 23. The  reconstructed daily components of the air and topsoil temperature. 
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Fig. 24. The multitaper power spectrrum density of the daily component of air temperature. 
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Fig. 25. The high-frequency (noisy) component of the air temperature. 
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Fig. 26. The multitaper power spectrum density of the noisy component of air temperature. 
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Fig. 27. The multitaper coherence and phase difference for daily components of air and topsoil 
temperature. 
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Fig. 28. The reconstructed seasonal components of the air and topsoil temperature. 
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Fig. 29. The multitaper coherence and phase difference for the seasonal components of air and 
topsoil temperature. 
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5.  STATISTICAL AND GEOSTATISTICAL ANALYSES OF TIME SERIES 
OF THE PHYSICAL VALUES AND PROPERTIES OF SOIL  

5.1. Field experiment  

The data analyzed in this monograph originated from two sources. The first 
was the measurement data acquired within the research project „Structure of 
radiation balance and the thermal-moisture relations of soil”, Grant KBN, No. PB 
1679/5/91 headed by Prof. R.T. Walczak [416]. The second – data collected 
within the research project KBN No. 6 P06H 029 20 (2001-2003) „Investigation 
of spatial variability of physicochemical soil properties as a base for precision 
agriculture„ State Committee for Scientific Research, during the period of 2001-
2003, headed by the first of the authors of this monograph.  

In the case of the first object of investigation, measurements were taken in an 
experimental plot of the Agrometeorological Station, University of Agriculture, 
Lublin, in the field of the Agricultural Experimental Station, University of 
Agriculture, located next to the Institute of Agrophysics in Lublin (Felin, 
51°13'29" N  22°38'42" E). The soil at Felin is classified as a grey brown podzolic 
soil. R. Turski (verbal information) classified the soil at Felin as a grey brown 
podzolic soil developed from a loess-like formation, incomplete, on a chalk 
formation. In the object studied, the following soil profile was determined: from 0 
to about 20 cm – humus horizon with brown-grey colouring, distinctly separated 
from the next layer with reddish colouring, below 30 cm somewhat lighter in 
colour with yellow spots and with high sand content. From the depth of about 45 
dm there appear fragments of weathered lime rock which becomes a significant 
material component of the soil below 90 cm [169]. The Table 2 presents the 
granulometric composition and some physical-chemical properties of the soil at 
the Agricultural Experimental Station, University of Agriculture (further referred 
to as the RZD AR Station) at Felin near Lublin [207].  

The measurements were taken on the object with plant canopy and without 
plants (as reference). The measurements were taken within the period of April-
July, 1993. The arrangement of the experimental plots, 50 x 40 m in size, was 
such that they were strung along a road passing through the middle of the station 
area. The fallow plot and the meteorological station plot had constant positions 
during the measurement seasons, while particular cultures were located on plots 
with an annual cycle of rotation (a specific culture would be moved in successive 
years by one plot in anticlockwise direction). TDR probes, spaced at 0.2 m from 
one another, were installed opposite the midpoints of the plots, in a row at the 
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distance of 3 m from the path.  Each of the probes had one moisture sensor. The 
moisture sensors covered 5 cm soil layers and were installed in the plots in the 
soil layers of 0-0.05, 0.05-0.1, 0.1-0.15, 0.2-0.25, 0.3-0.35, 0.4-0.45, 0.5-0.55, 
0.8-0.85 m. Measurements of soil moisture were taken once a day, in the 
afternoon hours. The time required to take measurements at all the measurement 
points in he experiment was approximately half an hour.  

Soil density was determined according to the gravimetric method, on the basis 
of soil cores sampled with cylinders 100 cm3 in volume and 5 cm high from the 
levels of TDR probe installation, down to the depth of 85 cm. The density 
measurements were taken in close proximity to the moisture sensors (about 0.5 m 
from the sensors) at the end of the moisture measurement sessions. Three soil 
cores were sampled from each horizon.  

The main mineral components of the soil, i.e. quartz and other minerals, were 
determined from the granulometric distribution assuming that the 1-0.02 mm 
fraction contains mainly quartz, and other minerals are contained in the fraction 
below 0.02 mm [78,390].  

Table 2. Granulometric composition and some physical-chemical properties of the soil at the RZD 
AR Station, Felin near Lublin [207].  

% content of granulometric fraction < 1 mm  
Layer 
(cm) 1-0.1 0.1 

-0.05 

0.05 

-0.02 

0.02 

-0.006 

0.006 

-0.002 

< 
0.002 

 
pH 

(KCl) 

 
OM 
(%) 

 
PD 

(Mgm-3) 

0-15 20 6 42 23 3 6 5.8 1.48 2.61 

30-40 16 10 42 13 6 13 5.4 - 2.63 

80-90 66 10 9 4 3 8 5.6 - 2.58 

OM – organic matter, PD – particle density of solid fraction.  

5.2. Results of statistical analysis  

The distribution of atmospheric precipitation during the period of the study is 
presented in Fig. 30a. The sum of precipitation for that period was 167.5 mm in 
total; the maximum recorded precipitation occurred on the 174th day of the year 
and amounted to 27.9 mm. The effect of precipitation is most visibly reflected in 
the plot without plants, in the surface horizon of the soil (Fig. 31c), while the 
presence of plant canopy has a distinctly damping effect on the temporal runs of 
soil moisture. The extent to which plants could change the time runs of soil 
moisture depended on their stage of development (i.e. the intensity of water 
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uptake by their roots), on the water interception on a given plant, and on the 
surface runoff which in turn was determined by the degree of compaction of the 
surface horizon of the soil (Fig. 30b).  
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Fig. 30.  Precipitation (a) as a function of time and soil bulk density (b) of spring barley, rye and 

bare soil. 
The mean values of soil density measured in the plots are shown, with relation 

to depth, in Fig. 30b. The lowest density was observed in the field with barley, in 
the arable layer, and the highest in the field with rye. Below the arable layer, the 
differentiation of soil density in the objects studied was only slight. The soil 
density distributions observed in the particular plots were related primarily to the 
time that elapsed from the last tillage applied, to the meteorological conditions, 

a) 

b)  
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and to the occurrence of the same genetic horizons at different depths in particular 
cultivation plots.  
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Fig. 31. Soil water content as a function of time for different depths (a - spring barley, b - rye, c - 

bare soil) during growing season. 
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Rys. 32. Soil thermal conductivity as a function of time for different depths (a - spring barley, b - 

rye, c - bare soil) during growing season. 
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Rys. 33. Soil heat capacity as a function of time for different depths (a - spring barley, b - rye, c - 

bare soil) during growing season. 
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Rys. 34. Soil thermal diffusivity as a function of time for different depths (a - spring barley, b - rye, 
c - bare soil) during growing season. 
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Table 3. Summary statistics for water content, thermal conductivity, heat capacity and thermal 
diffusivity of spring barley.  

Depth (m) 0 0.5 0.1 0.2 0.3 0.4 0.5 0.8 
Whole 
profile 

 Water content (m3 m-3) 

Mean 0.195 0.21 0.219 0.199 0.258 0.229 0.232 0.214 0.219 

Minimum 0.108 0.14 0.149 0.142 0.204 0.19 0.189 0.167 0.108 

Maximum 0.343 0.325 0.31 0.272 0.318 0.278 0.278 0.249 0.343 

Std.Dev. 0.054 0.049 0.047 0.043 0.036 0.031 0.033 0.027 0.045 

Coef.Var(%) 27.8 23.1 21.4 21.7 13.9 13.7 14.4 12.5 20.5 

Skewness 0.612 0.276 -0.009 0.305 0.283 0.211 0.150 -0.294 0.021 

Kurtosis 2.969 1.823 1.798 1.685 1.435 1.310 1.208 1.441 2.362 

 Thermal conductivity (W m-1 K-1) 

Mean 0.771 1.185 1.086 1.340 2.111 1.840 1.603 1.995 1.491 

Minimum 0.361 0.644 0.691 0.960 2.034 1.743 1.416 1.888 0.361 

Maximum 1.355 1.583 1.404 1.626 2.191 1.942 1.721 2.070 2.191 

Std.Dev. 0.268 0.250 0.242 0.225 0.052 0.081 0.089 0.066 0.479 

Coef.Var(%) 34.8 21.1 22.3 16.8 2.5 4.4 5.6 3.3 32.1 

Skewness 0.253 -0.273 -0.403 -0.216 0.030 0.038 0.119 -0.374 -0.401 

Kurtosis 2.364 1.875 1.839 1.782 1.467 1.247 1.327 1.579 2.145 

 Heat capacity × 106 (J m-3 K-1) 

Mean 1.683 1.852 1.841 1.865 2.309 2.107 2.033 2.107 1.975 

Minimum 1.318 1.559 1.550 1.629 2.083 1.943 1.852 1.912 1.318 

Maximum 2.300 2.333 2.223 2.172 2.560 2.311 2.224 2.255 2.560 

Std.Dev. 0.227 0.203 0.196 0.181 0.150 0.131 0.140 0.112 0.253 

Coef.Var(%) 13.5 11.0 10.6 9.7 6.5 6.2 6.9 5.3 12.8 

Skewness 0.612 0.276 -0.009 0.305 0.283 0.211 0.150 -0.295 -0.181 

Kurtosis 2.968 1.824 1.798 1.685 1.436 1.311 1.208 1.442 2.546 

 Thermal diffusivity × 10-7 (m2 s-1) 

Mean 4.454 6.331 5.824 7.135 9.166 8.742 7.892 9.475 7.377 

Minimum 2.738 4.129 4.455 5.892 8.561 8.404 7.649 7.177 2.738 

Maximum 6.002 7.147 6.623 7.790 9.763 8.997 8.118 9.873 9.873 

Std.Dev. 1.011 0.738 0.759 0.593 0.372 0.173 0.126 0.203 1.752 

Coef.Var(%) 22.7 11.7 13.0 8.3 4.1 2.0 1.6 2.1 23.8 

Skewness -0.402 -1.043 -0.814 -0.960 -0.315 -0.274 0.035 0.274 -0.604 

Kurtosis 2.118 3.472 2.215 2.855 1.435 1.643 1.635 1.447 2.578 
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Table 4. Summary statistics for water content, thermal conductivity, heat capacity and thermal 
diffusivity of rye.  

Depth (m) 0 0.5 0.1 0.2 0.3 0.4 0.5 0.8 
Whole 
 profile 

 Water content (m3 m-3) 

Mean 0.215 0.221 0.218 0.221 0.237 0.221 0.209 0.258 0.225 

Minimum 0.135 0.156 0.163 0.188 0.190 0.187 0.171 0.236 0.135 

Maximum 0.325 0.326 0.322 0.287 0.310 0.300 0.295 0.287 0.326 

Std.Dev. 0.044 0.044 0.036 0.032 0.033 0.035 0.038 0.012 0.038 

Coef.Var(%) 20.6 19.8 16.6 14.3 13.9 15.8 18.0 4.8 16.9 

Skewness 0.470 0.527 0.771 0.789 0.600 0.820 0.865 -0.026 0.292 

Kurtosis 2.592 2.260 3.072 2.248 2.072 2.368 2.480 1.885 2.195 

 Thermal conductivity (W m-1 K-1) 

Mean 1.705 1.773 1.863 1.591 1.809 1.598 1.996 2.038 1.797 

Minimum 1.368 1.479 1.676 1.423 1.694 1.432 1.914 2.004 1.368 

Maximum 1.939 1.973 2.037 1.761 1.955 1.717 2.142 2.087 2.142 

Std.Dev. 0.141 0.122 0.085 0.087 0.076 0.093 0.081 0.016 0.181 

Coef.Var(%) 8.3 6.9 4.6 5.5 4.2 5.8 4.1 0.8 10.1 

Skewness -0.631 -0.470 -0.049 0.647 0.167 0.519 0.454 -0.321 -0.147 

Kurtosis 2.983 2.681 2.445 2.039 1.783 2.085 1.674 4.228 2.041 

 Heat capacity × 106 (J m-3 K-1) 

Mean 2.018 2.059 2.077 1.990 2.121 1.992 2.096 2.275 2.078 

Minimum 1.684 1.788 1.849 1.851 1.925 1.850 1.938 2.185 1.684 

Maximum 2.479 2.499 2.513 2.264 2.427 2.323 2.456 2.398 2.513 

Std.Dev. 0.185 0.183 0.151 0.132 0.138 0.146 0.157 0.521 0.171 

Coef.Var(%) 9.2 8.9 7.3 6.7 6.5 7.3 7.5 2.3 8.2 

Skewness 0.470 0.529 0.771 0.789 0.601 0.821 0.866 -0.027 0.276 

Kurtosis 2.594 2.265 3.070 2.247 2.074 2.369 2.481 1.884 2.054 

 Thermal diffusivity × 10-7 (m2 s-1) 

Mean 8.457 8.627 8.986 8.001 8.542 8.029 9.541 8.958 8.643 

Minimum 7.823 7.898 8.107 7.691 8.055 7.652 8.721 8.702 7.652 

Maximum 8.838 9.019 9.381 8.160 8.840 8.210 9.879 9.176 9.879 

Std.Dev. 0.248 0.269 0.262 0.129 0.215 0.159 0.319 0.147 0.533 

Coef.Var(%) 2.9 3.1 2.9 1.6 2.5 2.0 3.3 1.6 6.2 

Skewness -0.615 -0.686 -1.173 -0.839 -0.750 -0.816 -1.176 0.080 0.359 

Kurtosis 2.516 2.677 4.236 2.324 2.507 2.411 3.206 1.434 2.477 
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Table 5. Summary statistics for water content, thermal conductivity, heat capacity and thermal 
diffusivity of bare soil.  

Depth (m) 0 0.5 0.1 0.2 0.3 0.4 0.5 0.8 
Whole 
 profile 

 Water content (m3 m-3) 

Mean 0.155 0.270 0.254 0.218 0.243 0.264 0.302 0.333 0.255 

Minimum 0.111 0.239 0.219 0.197 0.212 0.247 0.289 0.322 0.111 

Maximum 0.278 0.332 0.305 0.243 0.267 0.284 0.311 0.345 0.345 

Std.Dev. 0.034 0.021 0.023 0.013 0.013 0.010 0.005 0.005 0.053 

Coef.Var(%) 22.1 7.7 9.0 6.0 5.2 3.7 1.6 1.6 20.9 

Skewness 1.056 0.243 0.189 0.309 0.071 0.332 -0.196 -0.081 -0.631 

Kurtosis 3.870 2.415 1.833 1.973 2.299 2.026 2.384 2.481 3.207 

 Thermal conductivity (W m-1 K-1) 

Mean 0.821 1.867 1.817 1.706 2.032 2.095 2.062 2.132 1.816 

Minimum 0.239 1.814 1.730 1.642 1.981 2.077 2.056 2.115 0.550 

Maximum 0.406 1.954 1.900 1.776 2.059 2.127 2.066 2.162 2.162 

Std.Dev. 0.254 0.037 0.045 0.050 0.024 0.017 0.002 0.007 0.413 

Coef.Var(%) 30.9 2.0 2.5 2.9 1.2 0.8 0.1 0.3 22.7 

Skewness -1.056 -0.206 -0.084 0.170 -0.599 0.836 -0.168 1.315 -1.943 

Kurtosis 3.870 1.840 1.957 1.440 2.025 2.214 2.131 12.955 5.834 

 Heat capacity × 106 (J m-3 K-1) 

Mean 1.621 2.254 2.177 2.019 2.221 2.322 2.445 2.589 2.206 

Minimum 1.436 2.125 2.030 1.931 2.091 2.251 2.391 2.544 1.436 

Maximum 2.134 2.513 2.390 2.124 2.321 2.405 2.483 2.641 2.641 

Std.Dev. 0.143 0.872 0.955 0.549 0.524 0.410 0.204 0.220 0.284 

Coef.Var(%) 8.8 3.9 4.4 2.7 2.4 1.8 0.8 0.9 12.9 

Skewness 1.057 0.243 0.194 0.306 0.066 0.334 -0.200 -0.088 -0.919 

Kurtosis 3.869 2.411 1.832 1.973 2.307 2.029 2.385 2.600 3.510 

 Thermal diffusivity × 10-7 (m2 s-1) 

Mean 4.977 8.292 8.351 8.446 9.148 9.022 8.432 8.235 8.113 

Minimum 3.832 7.774 7.951 8.316 8.870 8.844 8.319 8.094 3.832 

Maximum 6.993 8.537 8.653 8.603 9.472 9.228 8.597 8.401 9.472 

Std.Dev. 1.091 0.164 0.174 0.071 0.124 0.093 0.061 0.061 1.291 

Coef.Var(%) 21.9 2.0 2.1 0.8 1.4 1.0 0.7 0.7 15.9 

Skewness 0.433 -0.507 -0.136 0.025 -0.405 0.202 0.235 0.189 -2.285 

Kurtosis 1.597 2.647 2.138 2.351 2.908 2.106 2.423 2.900 7.361 
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The time runs of soil moisture, thermal conductivity, capacity and diffusivity 
in the plots with barley and rye and in the bare plot are presented in Fig. 31, 32, 
33, 34. The dynamics of particular variables was related to the stage of plant 
development in the plots under study. Rye, which was already well grown and 
had time to consume most of the water available in the soil, caused a continual 
decrease in the soil moisture. In turn, the condition of the plants did not permit the 
soil to be re-supplied with water from precipitation, as only the surface horizon of 
the soil increased its moisture content slightly after a rainfall. Barley, which 
during the period of the experiment went through all of its development stages, 
shows in the soil moisture distribution both the amount of water used for plant 
growth and the amount of water that reached the soil surface. The bare field was 
characterized by the most uniform distribution of moisture in the soil profile. The 
surface horizon of the fallow plot was characterized by the strongest dynamics 
and effect of precipitation on soil moisture.  

The thermal properties of the soil (Fig. 32, 33, 34) reflected primarily the 
moisture status of the soil (Fig. 31), and to a lesser extent – the soil compaction 
condition (Fig. 30b). The time runs of the heat capacity of the soil conformed 
with the soil moisture runs. Slightly less similar to the moisture runs were the 
time runs of the thermal conductivity. In the case of the thermal diffusivity they 
were distinctly different from the moisture runs. In some of the diffusivity runs a 
certain reflection of the moisture runs could be noticed, but in most of them the 
diffusivity increased with a reduction in the soil moisture content (Fig 34). This 
type of time runs indicates that with a certain soil density the thermal diffusivity 
of the soil was already beyond its maximum, and a decrease in the soil moisture 
resulted in a diffusivity shift towards its maximum.  

The mean values of soil moisture within the whole profile were similar in the 
plots with plants, and somewhat different in the bare plot. The plots with plants 
had relatively uniform moisture distributions within the profile; the bare plot was 
characterized by a considerable drop in soil moisture values in the surface 
horizon, below which the values were more homogeneous.  

The mean values of soil density in the rye plot and in the fallow were almost 
the same; in the barley plot the mean soil density was lower than in the fallow. 
The mean values of the thermal properties in the soil profile did reflect the water 
content in the soil, but in the case of thermal conductivity and diffusivity the 
barley plot had values somewhat lower than the rye plot, even though the soil 
moisture of the barley plot was higher, but in this case the conductivity and 
diffusivity were also significantly affected by the soil density which was higher in 
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the rye plot. The heat capacity of the soil conformed to the soil moisture 
distribution in the plots.  

Standard deviation was used as a measure of the scatter of soil moisture 
values. The greatest scatter was observed in the plots with plant canopy, the 
smallest in the bare plot. Coefficients of variability calculated for the whole 
profile in particular plots were the highest for the moisture in the rye plot and for 
the thermal properties in the barley plot. The lowest variability was observed in 
the case of moisture in the bare plot and the thermal properties in the rye plot. 
Analyzing the soil profiles, the greatest variability was observed for the moisture 
and thermal properties in the barley plot, and the smallest variability within the 
profile for moisture, heat capacity, and thermal conductivity and diffusivity of soil 
for horizons below 0.1 m was observed in the bare plot. In the case of thermal 
conductivity and diffusivity of soil in the 0-0.1 m the lowest values were observed 
in the rye plot.  

Statistics characterizing the soil moisture distributions − histograms 
(asymmetry and kurtosis) indicate mainly a slight right-hand asymmetry and a 
somewhat smaller than normal distribution concentration of soil moisture values 
around its mean value (normal distribution - asymmetry equal 0, kurtosis equal 3). 
Distribution of the heat capacity of the soil were similar to those of soil moisture. 
Thermal conductivity and diffusivity of the soil showed a largely left-hand 
asymmetry in the distribution of values and somewhat smaller than normal 
distribution concentration of values of those thermal properties of the soil around 
their mean values.  

5.3. Results of correlation analysis 

Calculations of linear correlation of the soil features under consideration were 
performed at the significance level of p<0,05, and the results of the calculations 
are presented in Table 6, 7, 8 (statistically significant correlations are highlighted 
with bold type). Three objects were considered – two with plant cover and one 
bare. Correlations were calculated for the soil moisture, thermal conductivity, heat 
capacity, and thermal diffusivity. The results of the correlation analysis indicate 
that the presence of plants affected both the values of the correlations and their 
significance at a given depth. In a significant majority of cases, high and 
significant coefficients of correlation were obtained for the particular thermal and 
moisture properties of the soil between the particular horizons. The lowest 
number of significant correlations was observed in the rye plot, the highest in the 
barley plot. In the barley plot, between the soil surface and horizons below    
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z=0.2 m, and in the fallow plot only in the surface horizon of down to z=0.1 m, 
significant negative correlations were observed – in the barley plot for all the 
features under consideration, and in the fallow plot for the thermal diffusivity. In 
the other cases the correlations were positive. Lack of correlation between the 
surface of the soil z=0 m and the horizon of z=0.2 m, and between the horizon of 
z=0.05 m and below z=0.4 m was observed in the barley plot, though for the 
thermal diffusivity in that plot lack of correlation was observed only in two cases.  
The rye plot was characterized by a lack of correlation between the levels of z=0, 
z=0.05m and below z=0.2 m, the situation being varied for the particular thermal 
properties and moisture of the soil. Thermal conductivity in this object had the 
highest number of no correlation. The bare plot showed no significant correlation 
for all the variables under consideration only between the surface of the soil, z=0 
m, and the level below z=0.2 m.  

5.4. Analysis of soil moisture semivariograms  

The temporal-spatial variability of soil moisture and thermal properties of soil 
was also studied with the help of semivariograms. The nugget values, sills and 
ranges of temporal autocorrelation were determined, semivariogram models were 
fitted to the empirical values, and model fitting parameters were determined 
(Table 9, 10, 11). The quality of fitting of the theoretical semivariogram models 
to the empirical data was defined by means of the determination coefficient R2 
and residual squares sum RSS of the model values and the empirical values of the 
semivariogram. High values of the determination coefficient and low RSS values 
(in most cases R2 > 0.9, RSS<10-6) indicate a very high quality of theoretical 
models fitting to the empirical values of the semivariograms.  

Temporal autocorrelation was noted for all the features studied in the soil 
profile. The form of the temporal autocorrelation in the arable horizon was 
spherical in all the plots, and below the arable horizon changed to the Gaussian in 
the plots with plants and to exponential in the bare plot. The highest values of the 
temporal autocorrelation range were observed for the rye plot below the arable 
horizon (210 days), and the lowest in the surface horizon of the rye plot (9.5 days 
for diffusivity), the barley plot and the bare plot (17.4 and 18.1 days, 
respectively). The results indicate that the shortest “memory” in terms of the 
event (cause) resulting in changes in the distribution of soil moisture or thermal 
property is most often displayed by the surface horizon of the soil, with its non-
stabilized structure (loose soil). The deeper horizons, where the processes of mass 
exchange occur more slowly and where soil density does not change much within 
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the period under study, the causes of changes in the soil moisture are „visible” for 
a longer period of time, approximately half a year. The rye plot, in which the soil 
density in the surface horizon was the highest, was characterized by an over a 
month-and-a-half radius of autocorrelation in the arable horizon.  

5.5. Analysis of the fractal dimension of soil moisture  

Fractal dimensions calculated on the basis of smovariograms, and parameters 
of line fitting to the empirical data of semivariance in the logarithmic system of 
coordinates, are presented in Fig. 35 and in Tables 9, 10, 11. In a clear majority of 
cases the standard fitting error was below 0.1, while the determination coefficient 
R2 was above 0.9, the n number being the population of data for which the 
standard fitting error and the determination coefficient were calculated. These 
values indicate that the obtained results of line slope indexes provide a good 
indicator of semivariance change direction in the objects under study, and thus 
permit satisfactory determination of the fractal dimensions.  

The course of the fractal dimension of the thermal properties of soil was 
similar to that for the soil moisture. Slight differences in the form of the courses 
for the thermal properties may have resulted from the distribution of soil density 
in the soil profile. High values of the fractal dimensions of soil moisture and 
thermal properties in the surface horizon of the soil indicate a high level of 
randomness in their distribution. Such a situation in the distribution of soil 
moisture and thermal properties is observed in the fallow throughout the soil 
profile. A clear decrease in the fractal dimension values with increasing depth, 
however, was observed in the plots with plant cover. The decrease can be 
interpreted in terms of determination of the soil moisture distribution in time by 
an external factor. In this the external factor was the plant. It is also possible to 
interpret the decrease in another way, saying that the plants caused a decrease in 
the randomness of the soil moisture distribution in those plots.  
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Table 6. Correlation coefficients between the variables measured at the eighth depths (a - spring 
barley). The correlation coefficients are significant (bold type) at p < 0.05, N=75.  

Water 
content 

z=0 m z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

z=0 m 1.00 0.79 0.47 -0.01 -0.27 -0.42 -0.44 -0.57 

z=0.05 m 0.79 1.00 0.89 0.55 0.30 0.14 0.10 -0.06 

z=0.1 m 0.47 0.89 1.00 0.84 0.66 0.53 0.50 0.33 

z=0.2 m -0.01 0.55 0.84 1.00 0.95 0.88 0.85 0.73 

z=0.3 m -0.27 0.30 0.66 0.95 1.00 0.97 0.95 0.89 

z=0.4 m -0.42 0.14 0.53 0.88 0.97 1.00 0.96 0.94 

z=0.5 m -0.44 0.10 0.50 0.85 0.95 0.96 1.00 0.92 

z=0.8 m -0.57 -0.06 0.33 0.73 0.89 0.94 0.92 1.00 

 
Thermal 

conductivity 
z=0 m z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

z=0 m 1.00 0.76 0.46 -0.01 -0.29 -0.48 -0.45 -0.58 

z=0.05 m 0.76 1.00 0.90 0.60 0.33 0.12 0.14 -0.07 

z=0.1 m 0.46 0.90 1.00 0.84 0.65 0.46 0.51 0.27 

z=0.2 m -0.01 0.60 0.84 1.00 0.94 0.84 0.84 0.68 

z=0.3 m -0.29 0.33 0.65 0.94 1.00 0.96 0.96 0.88 

z=0.4 m -0.48 0.12 0.46 0.84 0.96 1.00 0.97 0.94 

z=0.5 m -0.45 0.14 0.51 0.84 0.96 0.97 1.00 0.91 

z=0.8 m -0.58 -0.07 0.27 0.68 0.88 0.94 0.91 1.00 

 
Heat 

capacity 
z=0 m z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

z=0 m 1.00 0.79 0.47 -0.01 -0.27 -0.42 -0.44 -0.57 

z=0.05 m 0.79 1.00 0.89 0.55 0.30 0.14 0.10 -0.06 

z=0.1 m 0.47 0.89 1.00 0.84 0.66 0.53 0.50 0.33 

z=0.2 m -0.01 0.55 0.84 1.00 0.95 0.88 0.85 0.73 

z=0.3 m -0.27 0.30 0.66 0.95 1.00 0.97 0.95 0.89 

z=0.4 m -0.42 0.14 0.53 0.88 0.97 1.00 0.96 0.94 

z=0.5 m -0.44 0.10 0.50 0.85 0.95 0.96 1.00 0.92 

z=0.8 m -0.57 -0.06 0.33 0.73 0.89 0.94 0.92 1.00 
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Continuation - Table 6 
Thermal 

diffusivity 
z=0 m z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

z=0 m 1.00 0.68 0.41 0.06 0.24 -0.37 -0.41 -0.55 

z=0.05 m 0.68 1.00 0.89 0.63 -0.38 0.25 0.24 0.00 

z=0.1 m 0.41 0.89 1.00 0.90 -0.59 0.46 0.52 0.27 

z=0.2 m 0.06 0.63 0.90 1.00 -0.72 0.62 0.72 0.52 

z=0.3 m 0.24 -0.38 -0.59 -0.72 1.00 -0.98 -0.95 -0.89 

z=0.4 m -0.37 0.25 0.46 0.62 -0.98 1.00 0.96 0.94 

z=0.5 m -0.41 0.24 0.52 0.72 -0.95 0.96 1.00 0.92 

z=0.8 m -0.55 0.00 0.27 0.52 -0.89 0.94 0.92 1.00 

 
Table 7. Correlation coefficients between the variables measured at the eighth depths (Rye). The 
correlation coefficients are significant (bold type) at p < 0.05, N=81.  

Water 
content 

z=0 m z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

z=0 m 1.00 0.97 0.90 0.20 0.14 0.22 0.22 0.25 

z=0.05 m 0.97 1.00 0.94 0.20 0.12 0.22 0.22 0.25 

z=0.1 m 0.90 0.94 1.00 0.40 0.32 0.41 0.41 0.32 

z=0.2 m 0.20 0.20 0.40 1.00 0.98 1.00 0.99 0.70 

z=0.3 m 0.14 0.12 0.32 0.98 1.00 0.99 0.98 0.70 

z=0.4 m 0.22 0.22 0.41 1.00 0.99 1.00 0.99 0.71 

z=0.5 m 0.22 0.22 0.41 0.99 0.98 0.99 1.00 0.70 

z=0.8 m 0.25 0.25 0.32 0.70 0.70 0.71 0.70 1.00 

 
Thermal 

conductivity 
z=0 m z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

z=0 m 1.00 0.95 0.88 0.15 0.05 0.16 0.13 0.26 

z=0.05 m 0.95 1.00 0.96 0.18 0.05 0.18 0.15 0.30 

z=0.1 m 0.88 0.96 1.00 0.31 0.18 0.30 0.28 0.34 

z=0.2 m 0.15 0.18 0.31 1.00 0.96 0.99 0.99 0.74 

z=0.3 m 0.05 0.05 0.18 0.96 1.00 0.97 0.97 0.71 

z=0.4 m 0.16 0.18 0.30 0.99 0.97 1.00 0.99 0.76 

z=0.5 m 0.13 0.15 0.28 0.99 0.97 0.99 1.00 0.75 

z=0.8 m 0.26 0.30 0.34 0.74 0.71 0.76 0.75 1.00 
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Continuation - Table 7 
Heat 

capacity 
z=0 m z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

z=0 m 1.00 0.97 0.90 0.20 0.14 0.22 0.22 0.25 

z=0.05 m 0.97 1.00 0.94 0.20 0.12 0.22 0.22 0.26 

z=0.1 m 0.90 0.94 1.00 0.40 0.32 0.41 0.41 0.32 

z=0.2 m 0.20 0.20 0.40 1.00 0.98 1.00 0.99 0.70 

z=0.3 m 0.14 0.12 0.32 0.98 1.00 0.99 0.98 0.70 

z=0.4 m 0.22 0.22 0.41 1.00 0.99 1.00 0.99 0.71 

z=0.5 m 0.22 0.22 0.41 0.99 0.98 0.99 1.00 0.70 

z=0.8 m 0.25 0.26 0.32 0.70 0.70 0.71 0.70 1.00 

 
Thermal 

diffusivity 
z=0 m z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

z=0 m 1.00 0.85 0.68 0.26 0.11 0.30 0.15 0.08 

z=0.05 m 0.85 1.00 0.90 0.35 0.13 0.37 0.20 0.14 

z=0.1 m 0.68 0.90 1.00 0.61 0.40 0.63 0.47 0.29 

z=0.2 m 0.26 0.35 0.61 1.00 0.92 0.99 0.95 0.49 

z=0.3 m 0.11 0.13 0.40 0.92 1.00 0.93 0.99 0.69 

z=0.4 m 0.30 0.37 0.63 0.99 0.93 1.00 0.95 0.50 

z=0.5 m 0.15 0.20 0.47 0.95 0.99 0.95 1.00 0.67 

z=0.8 m 0.08 0.14 0.29 0.49 0.69 0.50 0.67 1.00 

 
Table 8. Correlation coefficients between the variables measured at the eighth depths (Bare soil). 
The correlation coefficients are significant (bold type) at p < 0.05, N=79.  

Water 
content 

z=0 m z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

z=0 m 1.00 0.49 0.31 0.15 0.17 0.14 0.02 -0.13 

z=0.05 m 0.49 1.00 0.95 0.85 0.83 0.83 0.50 0.38 

z=0.1 m 0.31 0.95 1.00 0.94 0.92 0.92 0.59 0.52 

z=0.2 m 0.15 0.85 0.94 1.00 0.96 0.99 0.74 0.66 

z=0.3 m 0.17 0.83 0.92 0.96 1.00 0.96 0.70 0.61 

z=0.4 m 0.14 0.83 0.92 0.99 0.96 1.00 0.74 0.66 

z=0.5 m 0.02 0.50 0.59 0.74 0.70 0.74 1.00 0.88 

z=0.8 m -0.13 0.38 0.52 0.66 0.61 0.66 0.88 1.00 
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Continuation - Table 8 
Thermal 

conductivity 
z=0 m z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

z=0 m 1.00 0.46 0.31 0.17 0.17 0.13 -0.01 -0.15 

z=0.05 m 0.46 1.00 0.95 0.85 0.82 0.82 0.49 0.38 

z=0.1 m 0.31 0.95 1.00 0.94 0.90 0.91 0.58 0.51 

z=0.2 m 0.17 0.85 0.94 1.00 0.96 0.98 0.73 0.64 

z=0.3 m 0.17 0.82 0.90 0.96 1.00 0.95 0.69 0.61 

z=0.4 m 0.13 0.82 0.91 0.98 0.95 1.00 0.74 0.65 

z=0.5 m -0.01 0.49 0.58 0.73 0.69 0.74 1.00 0.87 

z=0.8 m -0.15 0.38 0.51 0.64 0.61 0.65 0.87 1.00 

 
Heat 

capacity 
z=0 m z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

z=0 m 1.00 0.49 0.31 0.15 0.17 0.14 0.02 -0.13 

z=0.05 m 0.49 1.00 0.95 0.85 0.83 0.83 0.50 0.38 

z=0.1 m 0.31 0.95 1.00 0.94 0.92 0.92 0.59 0.52 

z=0.2 m 0.15 0.85 0.94 1.00 0.96 0.99 0.74 0.66 

z=0.3 m 0.17 0.83 0.92 0.96 1.00 0.96 0.70 0.61 

z=0.4 m 0.14 0.83 0.92 0.99 0.96 1.00 0.75 0.66 

z=0.5 m 0.02 0.50 0.59 0.74 0.70 0.75 1.00 0.88 

z=0.8 m -0.13 0.38 0.52 0.66 0.61 0.66 0.88 1.00 

 
 Thermal 
diffusivity 

z=0 m z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

z=0 m 1.00 -0.40 -0.23 0.06 -0.08 -0.07 0.05 0.18 

z=0.05 m -0.40 1.00 0.95 0.78 0.83 0.83 0.50 0.38 

z=0.1 m -0.23 0.95 1.00 0.89 0.92 0.92 0.59 0.52 

z=0.2 m 0.06 0.78 0.89 1.00 0.92 0.94 0.69 0.66 

z=0.3 m -0.08 0.83 0.92 0.92 1.00 0.96 0.69 0.61 

z=0.4 m -0.07 0.83 0.92 0.94 0.96 1.00 0.74 0.66 

z=0.5 m 0.05 0.50 0.59 0.69 0.69 0.74 1.00 0.88 

z=0.8 m 0.18 0.38 0.52 0.66 0.61 0.66 0.88 1.00 
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Table 9. Fractal summary statistics and semivariogram parameters for water content, thermal 
conductivity, heat capacity and thermal diffusivity of spring barley.  

Depth (m) 0 0.05 0.1 0.2 0.3 0.4 0.5 0.8 
Water content 

SE 0.079 0.103 0.062 0.016 0.019 0.014 0.021 0.016 
R2 0.94 0.913 0.964 0.991 0.987 0.991 0.985 0.989 
n 29 24 24 79 66 66 66 66 
Model Sph Sph Sph Lin Gauss Gauss Gauss Gauss 
Nugget Co 3.34E-4 1.00E-6 1.00E-6 1.00E-6 4.00E-5 1.00E-5 2.00E-5 1.00E-6 
Sill Co +C 3.31E-3 2.67E-3 2.42E-3 5.36E-3 4.66E-3 3.34E-3 2.60E-3 2.54E-3 
Range 23.4 17.5 21.7 79 90 85 65 90 
R2 0.944 0.995 0.996 0.977 0.998 0.996 0.976 0.995 
RSS 1.46E-6 8.19E-8 1.07E-7 4.65E-6 3.66E-7 2.86E-7 1.50E-6 2.43E-7 

Thermal conductivity 
SE 0.063 0.077 0.071 0.039 0.021 0.015 0.02 0.017 
R2 0.961 0.945 0.95 0.962 0.984 0.99 0.987 0.988 
n 29 24 24 66 66 66 66 66 
Model Exp Sph Sph Exp Gauss Gauss Gauss Gauss 
Nugget Co 8.00E-4 1.00E-4 1.00E-4 0.0001 9.00E-5 1.00E-5 1.40E-4 1.00E-5 
Sill Co +C 8.87E-2 6.25E-2 5.80E-2 8.24E-2 7.87E-3 1.39E-2 1.92E-2 1.23E-2 
Range 48.3 22.5 22.1 112 95 80 65 93 
R2 0.979 0.996 0.993 0.982 0.997 0.994 0.979 0.996 
RSS 2.44E-4 4.31E-5 1.25E-4 5.33E-4 1.19E-6 8.47E-6 5.92E-5 3.39E-6 

Heat capacity 
SE 0.08 0.105 0.062 0.016 0.019 0.014 0.02 0.018 
R2 0.939 0.911 0.964 0.99 0.986 0.991 0.985 0.986 
n 29 24 24 79 66 66 66 66 
Model Exp Sph Sph Lin Gauss Gauss Gauss Gauss 
Nugget Co 
×1012 

1.00E-4 0.0001 1.00E-4 0.00E+0 7.00E-4 1.00E-4 3.00E-4 1.00E-4 

Sill Co +C 
×1012 

6.74E-2 4.64E-2 4.24E-2 9.34E-2 8.12E-2 0.059 4.59E-2 4.49E-2 

Range 36 17.4 21.7 79 90 85.4 62 89 
R2 0.97 0.995 0.996 0.975 0.998 0.996 0.979 0.995 
RSS 2.41E-4 2.61E-5 3.58E-5 1.52E-3 9.56E-5 8.47E-5 3.35E-4 6.51E-5 

Thermal diffusivity 
SE 0.042 0.037 0.073 0.05 0.018 0.014 0.029 0.017 
R2 0.975 0.985 0.943 0.978 0.987 0.991 0.975 0.986 
n 39 24 24 19 66 66 66 66 
Model Sph Sph Sph Sph Gauss Gauss Gauss Gauss 
Nugget Co 
×10-14 

0.032 0.001 0.001 0.000 0.004 0.0001 1.10E-3 1.00E-4 

Sill Co +C 
×10-14 

0.888 0.497 0.485 1.67E-1 0.566 0.1962 2.81E-2 1.95E-1 

Range  34.5 38.3 22.5 16.5 90 85 53 82 
R2 0.989 0.991 0.985 0.763 0.998 0.998 0.962 0.994 
RSS 3.00E-2 4.59E-3 1.75E-2 3.29E-2 2.93E-3 6.86E-4 2.33E-4 1.64E-3 

R2 – determination coefficient, RSS – residual squares sum of model values and empirical data, N – 
data population, Sph – spherical, Exp – exponential, Lin – linear  
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Table 10. Fractal summary statistics and semivariogram parameters for water content, thermal 
conductivity, heat capacity and thermal diffusivity of rye.  

Depth (m) 0 0.05 0.1 0.2 0.3 0.4 0.5 0.8 
Water content 

SE 0.093 0.101 0.078 0.044 0.046 0.019 0.011 0.039 
R2 0.854 0.841 0.889 0.917 0.917 0.98 0.993 0.967 
n 60 55 57 80 80 80 80 59 
Model Sph Sph Sph Gauss Gauss Gauss Gauss Sph 
Nugget Co 4.08E-4 3.32E-4 1.50E-5 3.00E-5 1.00E-5 2.00E-5 2.00E-5 8.00E-7 
Sill Co +C 2.87E-3 3.15E-3 2.22E-3 6.83E-3 6.95E-3 8.82E-3 1.13E-2 2.49E-3 
Range 47.3 52.7 53.5 155 145 160 170 47.1 
R2 0.848 0.954 0.981 0.996 0.997 0.994 0.993 0.98 
RSS 6.68E-6 2.12E-6 5.44E-7 4.94E-7 5.53E-7 1.04E-6 1.56E-6 7.16E-9 

Thermal conductivity 
SE 0.065 0.065 0.058 0.049 0.069 0.023 0.016 0.041 
R2 0.932 0.924 0.934 0.902 0.872 0.974 0.987 0.964 
n 50 55 57 80 80 80 80 59 
Model Sph Sph Sph Gauss Gauss Gauss Gauss Sph 
Nugget Co 4.30E-3 9.00E-4 1.00E-5 1.00E-4 1.00E-5 1.00E-4 1.00E-5 1.00E-6 
Sill Co +C 2.77E-2 1.79E-2 9.72E-3 3.33E-2 1.87E-2 3.95E-2 2.38E-2 4.62E-4 
Range 44 40.5 44 116 116 118 123 45.7 
R2 0.882 0.955 0.964 0.997 0.994 0.996 0.996 0.979 
RSS 3.87E-4 7.57E-5 2.07E-5 1.74E-5 1.03E-5 2.81E-5 8.85E-6 2.63E-8 

Heat capacity 
SE 0.077 0.101 0.079 0.043 0.044 0.024 0.009 0.038 
R2 0.902 0.842 0.89 0.92 0.922 0.97 0.995 0.97 
n 55 55 55 80 80 80 80 59 
Model Sph Sph Sph Gauss Gauss Gauss Gauss Sph 
Nugget Co 
×1012 

7.60E-3 5.80E-3 3.00E-4 5.00E-4 1.00E-4 4.00E-4 1.00E-4 4.00E-5 

Sill Co +C 
×1012 

5.49E-2 5.54E-2 3.87E-2 1.19E-1 1.27E-1 1.54E-1 1.72E-1 4.48E-3 

Range  54.5 53 53.7 155 150 160 154 49 
R2 0.929 0.954 0.981 0.996 0.997 0.994 0.991 0.981 
RSS 9.30E-4 6.46E-4 1.65E-4 1.48E-4 1.33E-4 3.06E-4 6.31E-4 2.13E-6 

Thermal diffusivity 
SE 0.0437 0.162 0.096 0.023 0.025 0.14 0.009 0.04 
R2 0.487 0.693 0.847 0.986 0.97 0.99 0.995 0.967 
n 20 55 55 80 80 80 79 59 
Model Sph Sph Sph Gauss Gauss Gauss Gauss Sph 
Nugget Co 
×10-14 

0.0001 0.0285 0.0067 1.10E-3 0.001 0.0011 1.00E-3 0.00 

Sill Co +C 
×10-14 

0.0682 0.15 0.1574 1.46E-1 0.486 0.2022 1.33 2.91E-2 

Range  9.3 81.4 67.9 210 161 205 182 46.7 
R2 0.284 0.858 0.98 0.959 0.996 0.954 0.991 0.98 
RSS 2.02E-2 9.05E-3 2.12E-3 8.31E-4 2.41E-3 1.99E-3 2.32E-2 9.79E-5 
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Table 11. Fractal summary statistics and semivariogram parameters for water content, thermal 
conductivity, heat capacity and thermal diffusivity of bare soil.  

Depth (m) 0 0.05 0.1 0.2 0.3 0.4 0.5 0.8 
Water content 

SE 0.219 0.091 0.042 0.023 0.4 0.28 0.09 0.0116 
R2 0.716 0.851 0.96 0.987 0.962 0.979 0.848 0.781 
n 29 70 70 70 70 70 70 70 
Model Sph Sph Sph Sph Exp Exp Lin Sph 
Nugget Co 3.74E-4 1.86E-4 1.33E-4 1.73E-5 1.29E-5 6.00E-7 8.58E-7 1.07E-5 
Sill Co +C 1.48E-3 6.06E-4 9.36E-4 3.22E-4 2.77E-4 2.07E-4 4.48E-5 4.08E-5 
Range 18.7 60.2 82.3 80.3 96.3 128.1 70 60.1 
R2 0.675 0.765 0.933 0.968 0.921 0.972 0.865 0.738 
RSS 1.34E-6 3.54E-7 2.85E-7 1.85E-8 2.57E-8 4.58E-9 1.18E-9 2.06E-9 

Thermal conductivity 
SE 0.187 0.097 0.051 0.037 0.05 0.029 0.094 0.114 
R2 0.769 0.832 0.941 0.967 0.945 0.978 0.838 0.786 
n 29 70 70 70 70 70 70 70 
Model Sph Sph Sph Sph Exp Exp Lin Sph 
Nugget Co 1.06E-2 4.57E-4 4.47E-4 2.18E-4 2.50E-5 4.00E-6 9.76E-6 8.81E-6 
Sill Co +C 4.93E-2 1.44E-3 2.73E-3 2.17E-3 5.78E-4 3.55E-4 5.01E-5 3.42E-5 
Range 18.6 57.8 73.1 66.4 73.5 130.5 70 60.9 
R2 0.75 0.759 0.914 0.949 0.898 0.972 0.854 0.747 
RSS 1.17E-3 2.02E-6 3.26E-6 1.38E-6 1.53E-7 1.30E-8 1.58E-9 1.41E-9 

Heat capacity 
SE 0.218 0.092 0.043 0.024 0.039 0.03 0.093 0.144 
R2 0.717 0.847 0.957 0.985 0.965 0.977 0.844 0.702 
n 29 70 70 70 70 70 70 70 
Model Sph Sph Sph Sph Exp Exp Lin Sph 
Nugget Co 
×1012 

6.60E-3 3.20E-3 2.27E-3 3.20E-4 2.70E-4 4.00E-5 1.70E-4 2.23E-4 

Sill Co +C 
×1012 

2.58E-2 1.05E-2 1.67E-2 5.54E-3 5.05E-3 3.61E-3 7.94E-4 7.22E-4 

Range  18.8 58.9 84.9 76.2 106.5 126 70 59.9 
R2 0.677 0.759 0.93 0.967 0.926 0.971 0.852 0.655 
RSS 4.07E-4 1.10E-4 9.20E-5 5.86E-6 7.39E-6 1.44E-6 3.83E-7 8.50E-7 

Thermal diffusivity 
SE 0.171 0.087 0.038 0.026 0.038 0.028 0.09 0.116 
R2 0.798 0.861 0.967 0.98 0.966 0.98 0.848 0.781 
n 29 70 70 70 70 70 70 70 
Model Sph Sph Sph Lin Exp Exp Lin Sph 
Nugget Co 
×10-14 0.098 0.0141 0.0082 1.00E-5 0.0014 0.0001 8.58E-4 1.07E-3 

Sill Co +C 
×10-14 

0.551 0.047 0.0661 7.82E-3 0.0346 0.0244 4.48E-3 4.08E-3 

Range 18.1 60.9 89 70 109.8 127.8 70 60.1 
R2 0.811 0.774 0.941 0.987 0.927 0.972 0.865 0.738 
RSS 1.12E-1 2.07E-3 1.17E-3 5.65E-6 3.42E-4 6.19E-5 1.18E-5 2.06E-5 
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Rys. 35. Fractal dimension as a function of depth a) water content, b) thermal conductivity, c) heat 

capacity and d) thermal diffusivity for rye, bare soil, and spring barley. 

5.6. Results of reciprocal correlation analysis  

For the determination of reciprocal correlation, precipitation data and data 
from soil moisture measurements with the TDR meter were used. The lack of 
precipitation of a given day was represented in the data set as 0 mm precipitation. 
Calculations of reciprocal correlation of precipitation and soil moisture at various 
depths were made for three objects – spring barley, rye, and bare soil, at the level 
of significance of p<0.05. The results of the calculations are presented in Table 
12. No significant reciprocal correlation was found between the precipitation and 
soil moisture in the soil profile for any of the objects studied. The lack of 
reciprocal correlation could have been the result of the population of data that 
were used for the study, or of the effect of other factors, e.g. plants, that had a 
more significant effect on the soil moisture in a given object than that of 
precipitation. The earlier analysis of correlation (Table 6, 7, 8) partially supports 

d) c) 

b) a) 
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this observation. Although the correlation analysis indicates a lack of correlation 
between the variables under consideration, observation of the soil moisture runs 
in particular objects and of precipitation distribution shows clearly that rainfall 
has an effect on the soil moisture. The amount of precipitation water that 
increased the soil moisture depended on the strength of the rainfall, on the 
hydrological properties of the soil (primarily the soil density), the status of the 
plant cover, and surface runoff. It can be assumed that the runoff was not overly 
large and similar in all of the objects studied. Basing on the precipitation 
distribution and on the soil moisture runs, an attempt was made at finding a 
temporal and spatial relationship between those variables, employing for the 
purpose the geostatistical methods which permit time and space to be included in 
the analysis.  

 
Table 12. Correlation between rainfall and water content for different depths - z.    

Rainfall  z=0 m  z=0.05 m  z=0.1 m  z=0.2 m  z=0.3 m  z=0.4 m  z=0.5 m  z=0.8 m 

Barley 

Rainfall 1.00 0.22 0.14 0.01 -0.10 -0.13 -0.18 -0.15 -0.19 

Rye 

Rainfall 1.00 0.04 0.05 -0.04 -0.18 -0.18 -0.18 -0.18 -0.16 

Bare soil 

Rainfall 1.00 0.06 0.04 0.01 -0.09 -0.09 -0.10 -0.13 -0.15 

 

5.7. Results of cross-semivariance analysis 

Analysis of semivariance and cross-semivariance of precipitation and soil 
moisture was performed for the three objects under study. The results of analyses 
concerned with precipitation and soil moisture at the level of z=0 m for each of 
the objects under study are shown in figures (Fig. 36, 37, 38); for the other levels 
the results are presented in tables 13, 14, 15. The tables, apart from the model and 
cross-semivariogram parameters, provide also statistics of theoretical cross-
semivariogram model fitting to empirical data, i.e. determination coefficients R2 
and residual squares sums RSS of the values from the model and the empirical 
data of the cross-semivariogram. In a majority of cases high values were observed 
in the case of the determination coefficient, and low values of the RSS. These 
data indicate good agreement in the fitting of the theoretical models to the 
empirical data of the corss-semivariograms. In a notable majority of cases, the 
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fitted cross-semivariogram models were Gaussian models, both in the plots with 
plants and in the bare plot.  

The earlier analyses of autocorrelation using semivariograms showed the 
existence of a temporal relationship in the soil moisture distribution (Table 9, 10, 
11,  Fig. 36a). The temporal autocorrelation radii varied with the depth, but were 
also related to the status of the plant cover on a given object. Precipitation, 
subjected to semivariance analysis, displayed a total lack of temporal dependence 
(Fig. 36b). This result indicates the random character of precipitation in time. The 
calculated cross-semivariance between precipitation and the soil moisture (Fig. 
36c, Table 13) indicates the existence of a temporal relationship. The nugget and 
sill values were positive in the surface horizon of the soil and varied negatively in 
the deeper layers. In the plot with plants, the change occurred already at z = 0.2 
m, and in the bare plot not until z = 0.4 m (Table 13, 14, 15). This difference in 
the transition from positive to negative values at different depths in the soil profile 
should be attributed to the influence of plants on the reduction of the amount of 
rainfall water reaching the soil surface, and to the use of water for plant growth 
through the root system which is located primarily in the arable horizon of the 
soil. Positive values of cross-semivariance indicate that the increase in soil 
moisture is due to rainfall. Negative values show that changes in soil moisture 
were related to another factor, probably water upflow from lower soil horizons.  
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Fig. 36.  Semivariograms (a, b), cross-semivariogram (c), and estimated mathematical models of 

water content and rainfall for spring barley  

a) 

b) 

c) 
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Fig. 37. Semivariogram (a) and cross-semivariogram (b), and estimated mathematical models of 

water content and rainfall for rye  

The ranges of the temporal relationship of cross-semivariance of precipitation 
and soil moisture were the largest below the arable horizon. Barley showed a 
correlation radius of from 2 to 6 days in the soil horizon from z=0 m to z=0.1 m 
and an over 80-day correlation below the level of z=0.1 m. Rye was characterized 
by an over 5-day correlation on the soil surface, over 30-day at the next level 
studied, and an 80-100-day radius of correlation at deeper soil horizons. The bare 
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plot had an approximately 3-day radius of reciprocal correlation in the soil layer 
from z=0 m to z=0.2 m; below that level it increased to about 20 days, and at the 
deeper level even exceeded 100 days. 
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Fig. 38. Semivariogram (a) and cross-semivariogram (b), and estimated mathematical models of 
water content and rainfall for bare soil 
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Table 13. Cross-semivariogram parameters for water content and validation statistics of kriging and cokriging method for spring barley.   

Barley Rainfall z=0 cm z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

Model Lin Gauss Gauss Gauss Gauss Gauss Gauss Lin Gauss 
Nugget Co 25.72 0.0001 0.0001 0.00001 -0.0001 -0.0001 -0.0005 -0.0001 -0.0023 
Sill Co +C 25.72 0.0566 0.0376 0.00992 -0.137 -0.1674 -0.2108 -0.069 -0.199 
Range 43 6.76 3.81 2.2 91 91 89.92 83.9 88.4 
R2 0.005 0.741 0.477 0.024 0.597 0.847 0.868 0.81 0.923 
RSS 357 1.68E-3 1.45E-3 2.49E-3 1.17E-3 7.75E-4 3.54E-4 5.38E-4 1.79E-4 
Kriging          
Regression coefficient 1.057 0.996 0.994 0.989 1.023 1.01 1.014 1 
Intercept  -0.01 0 0 0 -0.01 0 0 0 
SE  0.04 0.036 0.028 0.026 0.028 0.016 0.023 0.017 
R2  0.904 0.912 0.947 0.953 0.949 0.982 0.965 0.98 
SE Prediction 0.017 0.014 0.011 0.01 0.008 0.004 0.006 0.004 
Cokriging          
Regression coefficient 0.99 0.989 0.995 0.966 0.983 0.993 0.996 0.999 
Intercept  0 0 0 0 0 0 0 0 
SE  0.036 0.036 0.028 0.026 0.025 0.016 0.023 0.016 
R2  0.91 0.911 0.946 0.951 0.955 0.982 0.963 0.982 
SE Prediction 0.016 0.015 0.011 0.01 0.008 0.004 0.006 0.004 
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Table 14. Cross-semivariogram parameters for water content and validation statistics of kriging and cokriging method for rye. 

Rye Rainfall z=0 cm z=0.05 m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

Model Lin Gauss Gauss Gauss Gauss Gauss Gauss Gauss Gauss 
Nugget Co 25.72 0.00001 0.00588 0.0001 -0.0026 0.0001 -0.0019 -0.0044 -0.0025 
Sill Co +C 25.72 0.01362 0.02706 0.0343 -0.1813 -0.2 -0.2127 -0.2088 -0.0456 
Range 43 5.39 30.2 83.3 101 97 101 99.1 84.3 
R2 0.005 0.506 0.364 0.373 0.748 0.863 0.839 0.81 0.507 
RSS 357 6.81E-4 7.54E-4 1.22E-3 5.04E-4 3.67E-4 3.99E-4 4.93E-4 1.60E-4 
Kriging          
Regression coefficient 1.109 1.062 1.02 1.006 1.012 1.008 1.008 1.033 
Intercept  -0.02 -0.01 0 0 0 0 0 -0.01 
SE  0.044 0.023 0.027 0.015 0.023 0.014 0.015 0.059 
R2  0.889 0.923 0.948 0.982 0.96 0.985 0.983 0.795 
SE Prediction 0.015 0.011 0.008 0.004 0.007 0.004 0.005 0.006 
Cokriging          
Regression coefficient 1.02 992 1.019 0.995 0.977 0.998 0.991 0.935 
Intercept  0 0 0 0 0.01 0 0 0.02 
SE  0.032 0.029 0.027 0.015 0.028 0.015 0.0014 0.046 
R2  0.929 0.937 0.948 0.983 0.939 0.982 0.984 0.839 
SE Prediction 0.012 0.009 0.008 0.004 0.008 0.005 0.005 0.005 
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Table 15. Cross-semivariogram parameters for water content and validation statistics of kriging and cokriging method for bare soil.  

  

Bare soil Rainfall z=0 cm z=0.05m z=0.1 m z=0.2 m z=0.3 m z=0.4 m z=0.5 m z=0.8 m 

Model Lin Gauss Gauss Gauss Gauss Gauss Gauss Gauss Exp 
Nugget Co 25.72 0.0001 0.00001 0.00001 0 0 -0.00001 -0.00001 -0.00197 
Sill Co +C 25.72 0.01172 0.01282 0.01182 0.0008 0.00061 -0.00347 -0.01407 -0.01231 
Range 43 3.59 3.4 2.98 2.42 19.94 101 101 70.1 
R2 0.005 0.229 0.542 0.588 0.115 0.031 0.432 0.615 0.396 
RSS 357 1.88E-3 2.92E-4 1.64E-4 2.29E-5 4.14E-5 1.44E-4 3.33E-5 4.62E-5 
Kriging          
Regression coefficient 1.052 1.139 1.066 1.021 1.031 1.017 0.978 0.968 
Intercept  -0.01 -0.04 -0.02 0 -0.01 0 0.01 0.01 
SE  0.083 0.084 0.052 0.046 0.053 0.05 0.112 0.139 
R2  0.678 0.705 0.844 0.863 0.83 0.841 0.498 0.389 
SE Prediction 0.02 0.011 0.009 0.005 0.005 0.004 0.004 0.005 
Cokriging          
Regression coefficient 0.946 0.956 0.978 0.946 0.946 0.972 0.867 0.768 
Intercept  0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.08 
SE  0.069 0.054 0.043 0.048 0.05 0.046 0.086 0.098 
R2  0.706 0.801 0.871 0.837 0.821 0.853 0.568 0.43 
SE Prediction 0.019 0.009 0.008 0.005 0.005 0.004 0.004 0.005 
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5.8. Estimation of soil moisture distributions with the methods of kriging 
and cokriging 

In the calculations conducted according to the methods of kriging and 
cokriging, soil moisture was chosen as the basic variable, and precipitation was 
the auxiliary (secondary) variable. The determined semivariogram models of soil 
moisture and precipitation and the cross-semivariogram of soil moisture and 
precipitation were used in the estimation of soil moisture. Measured values of soil 
moisture (dots), calculated values (solid line) and standard deviations (broken 
line) for the surface horizon of soil z=0 m, for the three objects under study, are 
presented in Fig. 39, 40, 41. The conformity of calculated and measured values 
was examined by means of linear regression equation, standard error SE, and 
determination coefficients R2. Results of the comparisons are presented in Fig. 42, 
43, 44 and in Table 13, 14, 15. The statistics presented show good agreement 
between the measured values of soil moisture and the values calculated with the 
help of the two methods of calculation.  

The kriging method permited fairly accurate estimation of soil moisture on the 
basis of determined semivariogram and soil moisture values measured in prior 
(Fig. 42a, 43a, 44a and Tables 13, 14, 15). However, the estimated standard 
deviation of kriging clearly indicated a considerable area of uncertainty that was 
the greatest at the beginning and at the end of measurements.  

The application of the cokriging method results in a slight improvement of soil 
moisture estimations – in some cases the estimations were at the same level as 
with the kriging method but with a significant reduction of the area of uncertainty 
as expressed by standard deviation (Fig. 42b, 43b, 44b and Tables 13, 14, 15). 
Standard deviation was also small at the beginning and end of estimation.   
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Fig. 39. Measured (dots) and estimated (solid line) - with the kriging (a) and cokriging (b) methods - 
values of soil moisture in the surface horizon of soil z = 0 m in the spring barley plot. Broken line is 
used to mark standard deviations of kriging and cokriging.  
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Fig. 40. Measured (dots) and estimated (solid line) - with the kriging (a) and cokriging (b) methods - 
values of soil moisture in the surface horizon of soil z = 0 m in the rye plot. Broken line is used to 
mark standard deviations of kriging and cokriging  
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Fig. 41. Measured (dots) and estimated (solid line) - with the kriging (a) and cokriging (b) methods - 
values of soil moisture in the surface horizon of soil z = 0 m in the bare plot. Broken line is used to 
mark standard deviations of kriging and cokriging  
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5.9. Assessment of conformance of kriging and cokriging estimations 

The assessment of conformance of soil moisture values estimated with the 
kriging and cokriging methods was performed with the help of the cross-
validation method. From the time series, data were removed one at a time and, on 
the basis of neighbouring data, soil moisture value was estimated for the point of 
removal. The completion of the procedure for all the data possible yielded a set of 
calculated data equivalent to the measurement data. The measured and estimated 
data are presented in a system of coordinates (Fig. 42, 43, 44) and the statistical 
parameters illustrating the goodness of conformance are presented in Tables 13, 
14, 15. 

0.0

 

0.1

 

0.3

 

0.4

0.0  0.1  0.3  0.4

A
ct

ua
l, 

W
at

er
 c

on
te

nt

Estimated, Water content

Depth, z=0 cm

 

0.0

 

0.1

 

0.2

 

0.3

 

0.4

0.0  0.1  0.2  0.3  0.4

A
ct

ua
l, 

W
at

er
 c

on
te

nt

Estimated, Water content

 
Fig. 42. Comparison of soil moisture values - measured and calculated with the kriging (a) and 
cokriging (b) methods for the plot with spring barley (Water content – m3 m-3).  
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Solid lines represent the linear regression equations which were fitted to the 
measurement-calculation data. The broken line represented 1:1 relationship. High 
concentration of dots around the 1:1 axis and the overlapping of the solid line 
with the broken line indicate improvement of estimation with the cokriging 
method as compared to the kriging method. The kriging method also gives good 
conformance of measured and calculated data, but with somewhat divergent 
conformance of the linear regression equation to the 1:1 line. The standard error 

SE and the SE Prediction term, defined as 2R1−⋅SD , where SD = standard 
deviation of the actual data (Table 13, 14, 15) were low and thus indicated good 
conformance of the measured and calculated values. The figures show also that 
the greatest range of soil moisture values in the surface horizon during the 
vegetation season was observed in the barley plot, somewhat smaller in the rye 
plot, and the smallest in the bare field.  
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Fig. 43. Comparison of soil moisture values - measured and calculated with the kriging (a) and 
cokroging (b) methods for the plot with rye (Water content – m3 m-3). 
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Fig. 44. Comparison of soil moisture values - measured and calculated with the kriging (a) and 
cokroging (b) methods for the bare field (Water content – m3 m-3). 

5.10. Conclusion  

This part of the work was concerned with the assessment of the temporal and 
spatial variability of soil moisture and thermal properties in the soil profile in a 
field with plant cover and without, using the methods of geostatistical analysis 
and fractal theory.  

The basic statistical parameters were calculated and it was shown that the 
lowest and the highest values of soil moisture within the spring-summer season 
occurred in the bare field; the lowest in the surface horizon, and the highest in 

a) 

b) 
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deeper soil layers. The greatest variability of soil moisture within the soil profile 
was observed in the plots with plant cover, and the smallest in the bare field.  

The geostatistical parameters determined showed the temporal dependence of 
moisture distribution in the soil profile, with the autocorrelation radius increasing 
with increasing depth in the profile. The highest values of the radius were 
observed in the plots with plant cover below the arable horizon, and the lowest in 
the arable horizon on the barley and fallow plots.  

The fractal dimensions showed a clear decrease in values with increasing 
depth in the plots with plant cover, while in the bare plots they were relatively 
constant within the soil profile under study. Therefore, they indicated that the 
temporal distribution of soil moisture within the soil profile in the bare field was 
more random in character than in the plots with plants.  

The results obtained and the analyses indicate that the moisture in the soil 
profile, its variability and determination, are significantly affected by the type and 
condition of plant canopy. The differentiation in moisture content between the 
plots studied resulted from different precipitation interception and different 
intensity of water uptake by the roots.  

In calculations made with the help of the kriging and cokriging methods, soil 
moisture was chosen as the basic variable and precipitation as the auxiliary 
(secondary) variable. Semivariogram models were determined for soil moisture 
and precipitation, and the cross-semivariogram of moisture and precipitation was 
used for the estimation of soil moisture. The conformance of calculated and 
measured data was validated with the help of linear regression equations, standard 
errors SE, and the determination coefficients R2. The statistics presented indicate 
good conformance between the soil moisture values measured and calculated with 
the help of the two calculation methods.  

The method of kriging permitted a fairly good estimation of soil moisture on 
the basis of the semivariogram and the soil moisture values measured beforehand. 
However, the estimated standard deviation of kriging clearly showed a 
considerable area of uncertainty. The area of uncertainty was the greatest at the 
beginning and at the end of the measurements.  

The application of the method of cokriging provided a slight improvement in 
the estimation of soil moisture. Sometimes the estimation results were similar to 
those obtained with the kriging method, but there was a significant reduction of 
the area of uncertainty as expressed by the standard deviation. Standard deviation 
was also low at the beginning and at the end of the estimation.  
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6. INVESTIGATION OF SPATIAL VARIABILTY 

6.1. Field experiment  

In the case of the second object, the basic data considered in the tsudy 
originated from measurements of granulometric composition, pH, organic matter 
content and exchangeable cation capacity (CEC) in the surface horizon (0 – 10 
cm) of soil in arable fields in the commune of Trzebieszów [399]. The soil was 
sampled into cloth bags (approx. 1.5 kg of soil per sample). The soil samples were 
analyzed according to methods commonly used in soil science. Soil moisture was 
measured using the TDR meter (Soil moisture meter (TDR) elaboreted and 
pronanced by Institute of Agrophysics PAS Lublin, Poland) [216]. Concurrently, 
at the same sampling points, the soil was sampled into cylinders 100 cm3 in 
volume and 5 cm high, for soil moisture and density determinations according to 
the gravimetric method. That latter measurement method was used for the 
validation of data obtained with the reflectometric method (TDR) [394]. For soil 
moisture determinations, soil samples were taken from selected arable fields, 
from the arable horizon exclusively, in spring and in summer immediately after 
harvest. The measurement points within the fields were distributed on a regular 
grid (Fig. 45). The regular grid was marked out in the fields with the help of 
measuring tape, and selected reper points were determined with the help of 
Trimble's GPS GeoExplorer 3 with the accuracy of approx. 1 m. 

For each object the basic statistical parameters were determined, i.e. the mean 
value, standard deviation, coefficient of variability (CV), maximum and minimum 
values, as well as values characterizing the distribution of the given features, i.e. 
skewness and kurtosis. Spatial characterization of the data under consideration 
was performed with the geostatistical methods. The statistics, semivariograms, 
estimation of the soil features studied and their mapping were obtained with the 
help of such software packages as the GeoEas, Statistica 6, Variowin 2.21, GS+5 
Demo GS+ 7 Demo, Surfer 8 Demo [91, 109, 114, 280, 281]. 
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Fig. 45. Location of measurement points on fields A and B, (denoted: T1-T6 transects from 1 to 6, 

on field A point 0,0 corresponds to 22.53960361° λE and 51.98515° ϕN, on field B – 
22.56809278° λE and 51.98714389° ϕN) [399]. 

6.2. Results of statistical analysis 

The statistical parameters of the soil features studied for the surface horizon 
(0-10 cm) of arable fields A and B were calculated and compiled in Tables 16 and 
17. The mean value is an especially significant measure of the central trend of 
distribution of a given variable. Its reliability is increasing with the population of 
the sample. It is known that with increasing variance of data the reliability of the 

A
) 

B 
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mean value decreases. Standard deviations determined for the variables under 
consideration (Tables 16, 17) were, in most cases, significantly lower than the 
mean values, which indicates that the mean values obtained were representative 
for the objects studied.  
Table 16. Summary statistics of granulometric fraction, acidity (pH), organic mater content (OM) 
and cation exchange capacity (CEC) in 0-10 cm layer for cultivated field A [399].    

Cultivated field A 
Parameter % content of fractions pH [KCl] pH [H2O] OM CEC 

 
1-0.1 
[mm] 

0.1-0.02 
[mm] 

<0.02 
[mm] – – % cmol·kg–1 

                                                  Layer  0-10 cm 
Number of points 150 150 150 150 150 150 150 
Mean 48.8 37.2 14.0 3.905 4.458 0.835 11.8 
Variance 50.1 36.9 18.4 0.084 0.099 0.118 12.9 
Standard deviation 7.08 6.08 4.29 0.29 0.314 0.344 3.59 
Coefficient of variation 14.5 16.3 30.6 7.4 7.0 41.2 30.5 
Skewness 0.811 –0.419 –0.125 5.307 2.47 0.276 0.628 
Kurtosis 4.298 4.446 2.646 44.47 15.97 3.709 3.672 

        
Minimum 34 16 3 3.56 3.93 0.014 3.69 
25th %tile 44 34 11 3.78 4.27 0.650 9.22 
Median 48 38 15 3.86 4.39 0.832 11.40 
75th %tile 52 40 17 3.96 4.60 1.003 13.49 
Maximum 75 54 25 6.49 6.59 1.800 23.80 
 
Table 17. Summary statistics of granulometric fraction, acidity (pH), organic mater content (OM) 
and cation exchange capacity (CEC) in 0-10 cm layer for cultivated field B [399].   

Cultivated field B 
Parameter % content of fractions pH [KCl] pH [H2O] OM CEC 

 
1-0.1 
[mm] 

0.1-0.02 
[mm] 

<0.02 
[mm] – – % cmol·kg–1 

                                                          Layer  0-10 cm 
Number of points 50 50 50 50 50 50 50 
Mean 54.7 34.5 10.8 4.18 4.81 0.804 10.3 
Variance 57.1 45.5 23.0 0.143 0.173 0.076 14.6 
Standard deviation 7.56 6.74 4.79 0.378 0.416 0.276 3.82 
Coefficient of variation 13.8 19.5 44.4 9.0 8.6 34.4 37.0 
Skewness 0.005 0.273 1.377 1.688 0.918 –0.123 1.164 
Kurtosis 2.618 2.213 5.1 6.616 3.521 4.323 4.429 

        
Minimum 39 22 4 3.75 4.21 0.1 4.53 
25th %tile 49 30 7.5 3.93 4.51 0.668 7.57 
Median 55.5 33 9.5 4.09 4.74 0.832 9.63 
75th %tile 59.5 40 13 4.26 4.99 0.973 11.6 
Maximum 72 49 26 5.69 6.06 1.675 23.2 
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The content of granulometric fractions in the objects studied was rather varied 
in the scale of a field. In terms of mean values, the lowest sand content 
characterized the soil in the arable field A (48.8%), and the highest – in field B 
(average of 54.7%). The content of the silt fraction varied within the range from 
34.5% (field B) to 37,2% (arable field A), and that of clay - from 10.8% (field B) 
to 14% (field A). Minimum values of sand, silt and clay content in field A were 
34, 16 and 3%, and in field B were somewhat higher, i.e. by 5, 6 and 1, than in 
field A. Maximum values observed in both the fields were 75-72% for sand, 54-
49% for silt, and 25-26% for clay.  

Organic matter content in the soil of the arable fields was low at about 0.8%. 
The lowest and highest values of organic matter content observed at a single 
measurement point in the surface horizon were 0.1 and 1.8%. 

Soil reaction in the fields was acid. The mean pH value in the 0-10 cm 
horizon, measured in KCl, was 3.91 and in H2O approximately 4.8. Minimum pH 
values of soil samples were 3.6 (KCl) and 3.9 (H2O), and the maximum values - 
6.5 and 6.6, respectively (Tables 16, 17). The mean value of the cation exchange 
capacity was approximately 11 cmol·kg–1, though in individual samples it varied 
considerably (within the range from 3.7 to 28 cmol·kg–1).  

Comparison of the values of standard deviation of particular granulometric 
fractions, organic matter content, pH, and of the values of cation exchange 
capacity (CEC) (Tables 16, 17) permits the conclusion that within the fields the 
scatter of the values was fairly similar.   

Among the physical and chemical features in fields A and B, the lowest 
variability, as expressed by the coefficient of variability (CV) characterized the 
soil reaction pH, and the highest CV was recorded for the clay fraction content - 
44%. A CV value similar to that for the clay fraction content was characteristic 
for the organic matter content and the cation exchange capacity (CEC). 
Considerably lower CV values than for the clay fraction content were observed 
for the silt (16-19%) and sand (14-15%) fractions.  

Skewness, which characterizes the degree of distribution asymmetry with 
relation to its mean value, was, in the case of the variables under consideration, 
mostly positive – for some of the variables with rather moderate symmetry, for 
others (mainly the soil pH and organic matter content) with considerable 
symmetry. The silt fraction content and, sporadically, also the clay fraction 
content and pH, showed a slight negative asymmetry. Kurtosis, which 
characterizes the relative slenderness or flatness of a distribution as compared to 
the normal distribution (normal distribution kurtosis equals 3), showed - for most 
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of the variables – values similar to the normal distribution. Relatively low 
slenderness of distribution (kurtosis>3) was observed for the granulometric 
fractions of soil for all the data from the 0-10 cm horizon of the arable fields. A 
considerably greater slenderness of distribution was characteristic of the soil 
reaction, organic matter content, and cation exchange capacity.  

6.3. Results of correlation analysis 

Calculation of the linear correlation of the soil features under consideration 
was performed at the level of significance p<0.05. The results of the calculation 
are presented in Table 18 (statistically significant correlations are shown in bold 
type). High and significant coefficients of correlation between the contents of 
particular granulometric fractions in a given horizon indicate mutual 
interrelationships between those variables. Negative correlation was observed 
between the silt and sand fractions content, and positive correlation between the 
silt and clay fractions. Soil reaction values (pH in KCl and pH in H2O) were 
highly and positively mutually correlated, and somewhat less highly and 
negatively correlated with the silt fraction content and the organic matter content. 
Organic matter content correlated with the silt fraction content, the cation 
exchange capacity and the soil pH. The cation exchange capacity correlated with 
the sand, silt and clay fractions content, the correlation with sand being negative.  
 
Tabela  18. Correlation between soil physical properties in 0-10 cm layers [399]. 
 

 
 

Sand  
  

Silt  
 

Clay 
pH 
KCl  

pH 
H2O 

OM  CEC 

 Sand  1.00 –0.90 –0.68 0.05 0.04 –0.07 –0.28 

 Silt    1.00 0.30 –0.11 –0.10 0.10 0.14 

Clay    1.00 0.07 0.08 –0.02 0.40 

pH KCl     1.00 0.98 0.14 0.06 

pH H2O      1.00 0.12 0.05 

OM       1.00 0.45 

CEC        1.00 

 
Correlation coefficients were determined for p < 0.05 and N=464. Significant correlations are 
written in bold type. 
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6.4. Results of geostatistical analysis 

Measurement data from the fields were analyzed for the detection of trends in 
the spatial distribution of the soil features under consideration. In the case of the 
fields, it was found that the equation parameters show a slight decreasing trend in 
one direction and an increasing trend in the other, or an absence of trends. 
Organic matter content and cation exchange capacity also displayed no 
discernible trends in their data. In the case of those objects it can be assumed that 
the features under consideration meet the process stationarity or quasi-stationarity 
condition required in geostatistical analysis [122]. Moreover, the distributions of 
values of the soil features under study were mostly close to the normal 
distribution.  

The spatial variability of each of the soil features studied for a given object 
was analyzed with the help of semivariograms. The values of nuggets, sills and 
spatial autocorrelation ranges were determined, and semivariogram models were 
fitted to empirical data, together with the determination of model fitting 
parameters (Table 19). The quality of fitting of semivariogram theoretical models 
to the emprical data was determined with the help of the determination coefficient 
R2 and the sum of residual squares sum RSS, taking into consideration the values 
from the models and the empirical values of the semivariogram. High values of 
the determination coefficient (up to R2 > 0.85) and low values of the residual 
squares sum (RSS<10–6) found in a great majority of cases, indicate that the 
theoretical models can be fitted to the empirical semivariograms with a fairly high 
level of goodness.  

Spatial correlation of the features under consideration was found in almost all 
of the objects. The form of the spatial correlation in the arable horizon was mostly 
spherical. Exponential relationship was observed only in the case of three 
variables. The semivariogram parameters indicate that we deal here with the 
nugget effect. This indicates that the variability of the features under examination 
is less than the minimum soil sampling separation adopted in the field 
measurements. Values of semivariance saturation are comparable to the values of 
variance determined in the classical way (Tables 16, 17). Analyzing those values 
we can conclude that within the fields there were no clear trends in the variation 
of the soil features under study. The values of semivariogram saturation were a 
derivative of the content of particular fractions. The highest values were observed 
for the sand fraction content, markedly lower for silt, and the lowest for the clay 
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fraction content. In the case of soil reaction (pH) and organic matter content, 
somewhat higher values of semivariance were observed in field A than in field B. 
Also the cation exchange capacity semivariance values observed for field A were 
considerably higher than those in field B.  

Analyzing the ranges of spatial correlation of the physical and chemical 
properties, one can conclude that they were related to the size of the object 
studied. The highest values of spatial autocorrelation were observed in the arable 
field A where it varied from 78 to 500 m, while in field B it was from 12 to 310 
m.   

 
Table 19. Semivariogram parameters of soil properties in 0-10 cm layer for cultivated field A and B 
[399 ] 

Parameter Sand [%] Silt [%] Clay [%] pH [KCl] pH [H2O] 
OM 
 [m3· m–3] 

CEC 
 [cmol·kg–1] 

 Cultivated field  A, layer 0-10 cm 
Model Exp. Spherical Spherical Spherical Spherical Spherical Spherical 
Nugget [ ]2 27.08 28 11.24 0.07 0.08 0.107 10.5 
Sill [ ] 2 54.17 38 22.24 0.09 0.1 0.12 15 
Range [m] 77.9 350 450 150 150 150 500 
 Cultivated field  B, layer 0-10 cm 
Model Spherical Spherical Exp. Spherical Spherical Exp. Spherical 
Nugget [ ]2 1.18 0.01 5.66 0.00004 0.0001 0.0161 0.33 
Sill [ ] 2 28.74 17.42 11.33 0.011 0.042 0.0546 6.33 
Range [m] 12.2 13.5 28.4 12 12 310 16.6 
Exp. – Exponential. 

6.5. Estimation and preliminary analysis of maps  

The parameters and semovariogram models determined for the particular soil 
features, and the measurement data from the particular measurement points, were 
used – with the help of the kriging method – for the plotting of maps of spatial 
distribution of the features studied within a given object (Fig. 46, 47, 48, 49), and 
for the determination of the values of errors involved in the estimation. The 
estimation error, for all the soil features under study, did not exceed 10% of the 
feature under analysis. Close to the measurement points the errors were much 
smaller, at about 1-2%, and the greatest estimation errors occurred at the edges of 
the measurement grids.  

Generally, it can be stated that there is an overall similarity between layers in 
terms of distribution of a given feature. Even if the distribution image is not 
exactly the same, areas can be found that are similar in terms of values and retain 
greater or lesser similarity of one layer to another. Maps of the content of 
granulometric fractions display overall similarity of distribution due to the fact 
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that the sum has always to be 100%, but their values vary. Where there is more 
sand, there has to be less silt, and the other way round. However, considering the 
fact that the maps have been estimated with the help of the kriging method from 
the measurement points, it is certainly possible to find areas where the sum of 
fraction content is not always equal to 100%. But the very identification of the 
spatial distribution of particular fraction provides so much significant information 
(on the range of occurrence of specific values, directions of their changes), that it 
can be used in taking management decisions concerning a given area.  

Considerable differentiation in the spatial distribution of the content of 
granulometric fractions and pH values was observed in the case of the selected 
fields, even though their surface area was from 1 ha to 1.8 ha and one could have 
expected greater homogeneity of the soil in the fields (Fig. 46, 47, 48, 49). This 
shows the sense of taking a greater number of samples when determining the 
properties (features) of soil in a given field, and the necessity of determination of 
the spatial distribution of the features.  

It should be added that the visualization of the field of values of the physical 
and chemical properties of soil and of the values of estimation error permits the 
identification of those areas in the field in which the number of sampling points 
should be increased (or reduced) in subsequent measurements in order for the 
representation of a value studied to be burdened with an error not exceeding the 
level assumed by the experimenter.  
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Rys. 46. Spatial distribution of sand, silt, clay and organic matter (OM) content in the cultivated 
field A for 0-10 cm soil layer [399] 
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Rys. 47. Spatial distribution of pH H2O, pH KCl and CEC in the cultivated field A for 0-10 cm soil 
layer [399] 
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Rys. 48. Spatial distribution of sand, silt, clay and organic matter (OM) content in the cultivated 
field B for 0-10 cm soil layer [399] 
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Rys. 49. Spatial distribution of pH H2O, pH KCl and CEC in the cultivated field B for 0-10 cm soil 
layer [399] 

6.6. Conclusion 

The attempt, undertaken in this work, at determination (assessment) of the 
spatial variability of selected properties of soil on the scale of a field in the 
commune of Trzebieszów showed that there exists a distinct, though varied, 
variability of the values of the soil properties under consideration (content of 
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granulometric fractions and organic matter, soil reaction/acidity and cation 
exchange capacity) as well as their spatial correlation.  

The granulometric composition of soil (percentage content of particular 
fractions), low content of organic matter, as well as – to a certain extent – the 
chemical properties of the soil in the fields were related with the predominant soil 
type of the area (sandy soils developed from loose sands, weakly loamy, 
overlying loam, or loamy). The average content of sand fraction was 55%, silt - 
32%, clay - 13%, and organic matter - 0.8%. The soil reaction was acid or neutral 
(average pH about 4.4), and the average value of cation exchange capacity was 11 
cmol·kg–1. However – while retaining a generally similar distribution and order of 
values – considerable differentiation of the features was observed, both within the 
larger field and in the smaller one, where due to the smaller area one could have 
expected a greater homogeneity of the soil.  

From among the granulometric fractions, the greatest scatter of values was 
characteristic of the sand content, and the smallest – of clay. Scatter of the values 
of organic matter content was similar in both fields. Also the values of pH and 
cation exchange capacity had similar scatter of values in both fields.  

Spatial correlation was observed for all the soil features, irrespective of which 
field was considered – the longer or the shorter one. The form of the spatial 
correlation was spherical in most of the cases, and exponential in some. The 
ranges of spatial correlation were mainly related to the scale of the object, but also 
to the type of variable.  

The spatial distributions (maps) of the soil features studied, estimated on the 
basis of point measurements, show their differentiation within a given object 
(commune, cultivated field) and may constitute the basis for the identification of 
objects that require the application of various cultivation measures (e.g. liming or 
fertilization).  

6.7. Soil moisture in field transects 

Soil moisture was considerably differentiated along the length of the fields 
(Fig. 50, 51). Especially sharp changes in soil moisture was observed at the 
beginning ands at the end of field A, related primarily to the relief of the terrain. 
The beginning of the field was a slight slope, and the end – a hollow. The flat part 
of the field (between 100th and 400th meter) was characterized by uniform soil 
moisture content values. In the case of field B, a fairly uniform soil moisture 
content was observed in the first part of the field, and a considerable increase in 
soil moisture content in the other. The distribution of soil moisture in this field 
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was also related to the relief of the terrain. A slight slope was observed in the 
initial part of the field, then the slope angle increased in further part of the field 
which ended with a trough.  
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Fig. 50. Water content transects T1-T6 through field A with trend equations also shown 
 



 108

 
The presented runs of soil moisture content indicate its increase along the 

length of the field. The increases were examined with the help of the lines of 
linear and quadratic trends which were obtained from the fitting of the equation to 
all the data for a given field. The moisture content in field A, as compared to field 
B, was characterized by a lower directional index of the line (by about one order 
in value). The trend lines and their directional indexes indicate the existence of a 
small deterministic component in the soil moisture content in field A, and a much 
bigger one in field B. If this simple trend analysis can be the basis for the 
conclusion that the condition of process stationarity is fulfilled in the case of field 
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Fig. 51. Water content transects T1-T5 through field B with trend equations also shown 
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A, in the case of field B this condition will probably not be fulfilled. Therefore, the 
trends were removed from the data obtained from fields A and B in order to meet the 
condition of process stationarity and to find out if the trend affected the values of the 
semivariograms.  

6.8. Basic statistics of soil moisture  

The mean values of soil moisture in the two fields did not differ significantly – 
the difference was less than 1% (Table 20). Also similar was the scatter of soil 
moisture values in the two fields., as were the coefficients of variability of soil 
moisture – about 35%. The soil moisture distributions had right-hand skewness 
and were characterized by considerable slenderness – kurtosis 4-6 (skewness 0, 
kurtosis 3 – normal distribution [91]).  

Table 20. Summary statistics of water content on field A, B, and for all data from A and B [401]  

Parameters Field A Field B All data from fields A and B 

N – Number 156 55 211 

Mean  0.140 0.149 0.143 

Std. Dev.    0.049 0.052 0.050 

Coef. Var. 35.1 34.6 35.0 

Skewness 1.313 1.006 1.225 

Kurtosis 6.097 4.366 5.549 

    

Minimum 0.038 0.064 0.038 

25th %tile 0.111 0.121 0.114 

Median 0.137 0.143 0.139 

75th %tile 0.156 0.162 0.158 

Maximum 0.316 0.321 0.321 

6.9.Semivariance 

Calculations of semivariance of soil moisture were made for two fields – field 
A and field B. Semivariance was calculated on the basis of direct measurement 
data, as well as data in which the linear and quadratic trends had been removed 
from the original measurement data. To semivariance values determined in this 
way, mathematical models of semivariograms were fitted (Table 21). For 
comparative purposes, the classical variance was also calculated and presented. In 
the case of field A, the presented semivariance was estimated directly from the 
basic semivariance equation, while in the case of field B the standardized 
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semivariogram was presented. The latter semivariogram was employed bacause the 
scatter of semivariance values from the basic semivariance equation was extensive 
enough to make it difficult to fit a model of semivariogram. The standardization of 
semivariogram markedly improved the fitting of the model of semivariogram to the 
empirical data and permitted the determination of semivariogram parameters.  

Table 21. Parameters and models of semivariograms for water content in fields A and B [401] 

Anisotropy 
Data Model Nugget Sill Range 

Ratio Angle 

 Field A 

T Exp. 0.000570 0.00180 95.3 2   48.01 

DTL Exp. 0.000671 0.00155 109.0 2 49.11 

DTQ Exp. 0.000542 0.00147 104.6 1.998 54.33 

 Field B 

T Sph. 0.37 0.87 110 1.023 109.9 

DTL Sph. 0.72 0.5 100 1 0 

DTQ Sph. 1 0.1 110 1 0 

Denoted: Exp. – exponential, Sph. – spherical, T – data with trend, DTL – linear detrending, DTQ – 
quadratic detrending. 

The existence of spatial correlation of soil moisture content was found in both 
objects. In field A exponential character of the spatial correlation was observed, 
while in field B the correlation was spherical. The values of the range of spatial 
correlation presented in Table 21 were similar at about 100 m, but the effective 
radii of spatial correlation in field A was about three-fold that of the radii in field 
B – this results from the definition of range for the exponential model. In both 
cases the nugget effect was observed. Detrending of data from field A did not 
cause any significant changes in the nugget values, while in the case of field B 
data detrending caused a significant increase in the nugget values (Table 21). The 
existence of nugget values in both objects under study indicates that the adopted 
sampling step was too large. Considering the nugget values it can be concluded 
that the sampling step in field A was somewhat better chosen than in field B. In 
field A, the semivariogram saturation parameters (sill values) decreased a little 
with increasing order of trend equation applied, while in field B they remained on 
the same level if linear trend was used, and slightly decreased with quadratic 
detrending. The somewhat higher semivariance in field B than the value of 
classical semivariance, and its decrease with increasing order of trend, indicate 
the existence of trend of higher order. However, due to the complexity of 
calculations involved in higher order detrending, no further analyses were made.  
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A mild anisotropy was found in the soil moisture distribution in field A, and a 
lack of such anisotropy in field B. Anisotropy is expressed here with the ratio of 
the maximum to the minimum range of semivariogram. The value of anisotropy 
was 2 in field A and 1 in field B. The preferential direction of anisotropy in the 
case of field A was about 50° and did not change with detrending. In the case if 
field B the direction was 109° for original data and decreased to 0° after the 
detrending.  

6.10.  Comparison of soil moisture values – measured and estimated with 
the kriging method 

Conformance checks for soil moisture values measured directly with the TDR 
meter and estimated with the kriging method were performed through analysis of 
the determination coefficients R2, mean values of differences in measured and 
estimated data, medians of absolute values of differences measured values and 
median of measured moisture, and root mean square of the differences of 
measured and estimated values (Table 22). In Table 22 bold type was used to 
indicate the bast conformance of measured and estimated soil moisture values.  

Table 22.  Summary statistics of water content measured and estimated by kriging method [401] 

Data R2 Mean    M.A.D. R.M.S. 
 Field A 

T 0.673 0.00024 0.0201 0.0286 
DTL 0.668 0.00025 0.0203 0.0289 

DTQ 0.663 –0.00012 0.0208 0.0292 

 Field B 

T 0.419 0.00065 0.0216 0.0397 

DTL 0.426 0.00057 0.0212 0.0395 
DTQ 0.414 –0.00100 0.0250 0.0408 

Denoted: T – data with trend, DTL – linear detrending, DTQ – quadratic detrending, 
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Considering the simple regression analysis of soil moisturee along fields A 
and B (Fig. 50, 51), analysis of semivariograms (Table 21) and parameters of 
conformance of the measured and estimated values of soil moisture (Table 22) we 
can assume that the results obtained on the basis of original measurement data in 
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field A are sufficient for representative description of the spatial correlation of 
soil moisture in that field and for mapping the soil moisture distribution. In the 
case of field B, the same is fulfilled for data after linear detrending.  

6.11. Soil moisture distribution maps  

Estimated maps of soil moisture distribution based on original measurement 
data, and on data after linear and quadratic detrending, are presented in Figures 52 
and 53.  

 

 

 
Fig. 52.  Spatial distribution of water content for field A, upper figure with measured data, central 
figure – data with linear detrending, and lower figure – data with quadratic detrending (WC – water 
content (m3 m-3))  
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Fig. 53.  Spatial distribution of water content for field B, upper figure with measured data, central 
figure – data with linear detrending, and lower – figure data with quadratic detrending (WC – water 
content (m3 m-3))  

Soil moisture distributions in field A did not differ significantly. The 
parameters describing the conformance of measured and estimated values in that 
field (Table 22) confirm the above observation. Greater differences in soil 
moisture distributions were observed in field B. Soil moisture distributions based 
on measurement data were much more similar to distributions with linear 
detrending than to those with quadratic detrending. In this case, the parameters of 
conformance indicate the best data fitting for data with linear detrending.  

The analyses and the parameters of conformance, their increase or decrease for 
particular steps in the analyses, may be provide the basis for future decisions as to 
whether extract the deterministic components from measurement data or not. 
Considering the much greater complexity of calculations involved when trends 
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are included in analyses, one can arrive at the conclusion that in some cases the 
analyses can be limited to measurement data alone, primarily in situations where 
linear regression shows only trace trends in the data under analysis. One should, 
however, keep in mind the acceptable values of estimation error.  

6.12. Conclusion 

Presented above are the results of analyses of the spatial variability of soil 
moisture content, based on measurement data obtained with the help of the TDR 
meter and on data from which the deterministic component, i.e. linear and 
quadratic trends, had been eliminated. The study was conducted on two cultivated 
fields, immediately after harvest. In both the objects similar variability of soil 
moisture was observed (coefficient of variability was about 35%). The study 
showed the existence of deterministic components (trends) in the soil moisture 
distribution in both the fields, as well as spatial correlation of the soil moisture. 
The character of the spatial correlation was related to the size of the object – the 
longer field was characterized by exponential correlation and the shorter field – 
spherical, the effective range of the spatial correlation being three times greater in 
the longer field. The estimated maps of soil moisture distribution in the longer 
field were similar in spite of data detrending, while in the case of the shorter field 
the maps were different. Conformance between measurement data and data 
estimated with the kriging method depended on the value of the deterministic 
component in the data under analysis.  

7. GENERAL CONCLUSION  

We have presented a new methodology for the analysis of agro-meteorological 
data. Wavelet transform as a time-frequency analysis method is very efficient in 
finding localized intermittent periodicities. Cross wavelet analysis and wavelet 
coherence are powerful methods for testing phase relationships between two time 
series. Empirical Mode Decomposition used as a data-driven sub-band filtering 
method allows to decompose the original time series into a number components 
that can be studied separately with modern power spectrum methods. The 
efficiency of the above approach has been confirmed using the Multitaper 
Method. We have shown that the heat transfer regime at the air-soil interface can 
be studied very accurately with these methods.  

In the methodological aspect, the study showed that at the stage of recognition 
of the variability of soil features (especially stationary ones) a large sampling 
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population is required. Such a recognition will permit the determination of the 
necessary (optimal) number of samples for the determination of other soil features 
(less stationary and dynamic) – a number that will be adapted to the scale of the 
object and to the soil variability.  

The presented study on the spatial variability of physical and chemical 
properties of soil have both a cognitive and a practical character. Recognition of 
the soil on the scale of the commune permitted the determination of the general 
status of the features and physical properties of the soil, determination of 
parameters describing their spatial variability, and mapping the spatial 
distribution of the features. In the case of a cultivated field, the knowledge of the 
spatial variability of the physical and chemical properties of soil and – 
contextually – of the spatial variability of crops permits the determination of the 
actual conditions of plant growth and crop yielding on a given object. This can 
constitute the basis for the formulation of agrotechnical recommendations aimed 
at the optimisation of tillage through the identification of areas that require e.g. 
additional liming, or organic or mineral fertilization.  

If we know the spatial distribution of particular physical and chemical 
properties of soil (maps of distribution of soil features), we can employ more 
rational management of natural resources and energy inputs required for 
particular tillage operations. The ecological effects of such knowledge of spatial 
variability may be highly significant. First of all, we may prevent excessive 
accumulation of chemical components where their content in the soil is already 
sufficient, and thus economize on the costs of chemical fertilizers and reduce the 
costs of soil reclamation that would be necessary if such excessive accumulation 
has occurred. Moreover, known character of spatial variability should provide the 
basis for more accurate description of physical processes and phenomena 
occurring in the environment through 2D and 3D modelling of mass and energy 
flux within a given system under study.  

It should be emphasized that the study of spatial variability of physical and 
chemical properties of soil constitutes the foundations of precision agriculture, 
currently being promoted and implemented in the most economically developed 
countries of the world. In Poland, studies of this type are more and more 
frequently developed and applied, although still predominantly in the scientific 
circles. Therefore, there appears a need for an integrated approach to studies of 
this type, so that the results can be implemented and utilized in agriculture and 
environmental protection as fast and as fully as possible. First of all we should 
make use of the results of earlier studies (already published in scientific 
publications and reports) and of data accumulated in data bases, although these 
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are not very numerous as yet. Special attention should be paid to those soil 
properties that are stable and do not change significantly over long periods of 
time, but are difficult to determine. Data concerning the physical features and 
properties of soils that are characterized by dynamic change are also valuable and 
should be collected in databases. Irrespective of whether they come from 
literature or originate from current data acquisition programs and studies, they 
may constitute material for comparisons, search for correlations among one 
another and with the stable features of soils, and for temporal variation analyses.  
Access to databases is currently difficult (sometimes impossible) and requires 
separate discussions and decisions. Our progress in the utilization of research 
results accumulated so far for purposes of precision agriculture and environmental 
protection will depend on how fast the scientific circles and the decision makers 
can solve the problem.  
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