Lamorski Krzysztof

Lamorski Krzysztof

Print Friendly
dr hab. Lamorski Krzysztof
Nr pokoju: 207
E-mail: k.lamorski@ipan.lublin.pl
Nr telefonu: (81) 744 50 61 w. 121

Zakład i laboratorium

Zakład: Zakład Metrologii i Modelowania Procesów Agrofizycznych

Laboratorium: Laboratorium Monitoringu Środowiska Przyrodniczego

Zainteresowania

Zainteresowania naukowe:

  • Modelowanie zjawisk transportu masy i energii w ośrodkach porowatych
  • Zastosowania algorytmów genetycznych i sztucznych sieci neuronowych w zagadnieniach agrofizycznych

Inne informacje

Uzyskane stopnie naukowe:

  • 1997    Mgr fizyki o specjalności fizyka teoretyczna
    Wydział Matematyki i Fizyki UMCS w Lublinie
  • 2005    Dr nauk rolniczych w zakresie agronomii-agrofizyki
    Instytut Agrofizyki im. B. Dobrzańskiego PAN w Lublinie
    Tytuł pracy: „Modelowe badania pola temperatury w profilu glebowym z lokalnym zaburzeniem właściwości cieplnych”

Publikacje pracownika

  1. 2018, The use of X-ray computed microtomography for soil craters created after the raindrop splash, 3rd International Symposium of Soil Physics “The common people doing the unusual things", Kraków, Poland 14-15.02.2018 , str. 14-15
  2. 2017, Metodyka pomiaru i modelowania emisji N2O, XXXVIII Ogólnopolski Zjazd Agrometeorologów i Klimatologów pt. "Innowacje na rzecz adaptacji wobec zmian klimatu", Puławy 18-20.09.2017, str. 131
  3. 2017, Modelowanie emisji N2O na poziomie pola w różnych reżimach uprawy i nawożenia, XXXVIII Ogólnopolski Zjazd Agrometeorologów i Klimatologów pt. "Innowacje na rzecz adaptacji wobec zmian klimatu", Puławy 18-20.09.2017, str. 133
  4. 2017, The effect of initial resident fluid saturation on the interaction between resident and infiltrating fluids in porous media, AGU Fall Meeting, New Oleans, 11-15.12.2017,
  5. 2018, Application of X-ray computed microtomography to soil craters formed by raindrop splash, Geomorphology, 303: 357-361
  6. 2018, Dynamics of gas cell coalescence during baking expansion of leavened dough, Food Research International, 103: 30-39
  7. 2017, Modelling of saturated hydraulic conductivity coefficient – validation for soil cores, 16th International Workshop for Young Scientists „BioPhys Spring 2017”, Lublin, Poland, 1-3.06.2017 , str. 42
  8. 2017, Physico-chemical and microbiological evidence of exposure effects on Picea abies – Coarse woody debris at different stages of decay, Forest Ecology and Management, 391: 376-389
  9. 2017, An estimation of the main wetting branch of the soil water retention curve based on its main drying branch using the machine learning method, Water Resources Research, DOI: 10.1002/2016WR019533
  10. 2016, Modeling Soil Processes: Review, Key Challenges, and New Perspectives, Vadose Zone Journal, 15(5): 1-57
  11. 2016, Modification of Lightweight Aggregates’ Microstructure by Used Motor Oil Addition, Materials, 9(10), 845, 1-12
  12. 2015, A System for Recording the Dynamics of the Water Drop’s Impact on a Surface., Measurement and Control, 48(5): 149-156
  13. 2015, Effect of humic acids, sesquioxides and silica on the pore system of silt aggregates measured by water vapour desorption, mercury intrusion and microtomography., European Journal of Soil Science, 66(6): 992-1001
  14. 2015, Modeling of saturated hydraulic conductivity coefficient based on x-ray computer tomography imaging., 2015, 22-23
  15. 2014, Modelling soil water retention using support vector machines with genetic algorithm optimisation, The Scientific World Journal, DOI: 10.1155/2014/740521
  16. 2014, Assessment of the usefulness of particle size distribution measured by laser differaction for soil water retention modelling., Journal of Plant Nutrition and Soil Science, 2014, 177(5): 803-813
  17. 2014, Effect of Time-Domain Reflectrometry probe location on soil moisture measurement during wetting and drying processes., Measurement, 2014, 49182-186
  18. 2014, Gleba jako układ termodynamiczny., AGROFIZYKA procesy, właściwości, metody, 28-31
  19. 2014, Układ gleba-roślina-atmosfera jako kontinuum., AGROFIZYKA procesy, właściwości, metody, 81-88
  20. 2014, Modelowanie procesów fizycznych zachodzących w środowisku glebowym., AGROFIZYKA procesy, właściwości, metody, 210-212
  21. 2014, Estimation of water saturated permeability of soils, using 3D soil tomographic images and pore-level transport phenomena modelling., 2014, Vol. 16, EGU2014-11775
  22. 2014, Numerical modelling of the impact of a liquid drop on the surface of a two-phase fluid system., 2014, Vol. 16, EGU2014-12447
  23. 2014, Modelowanie transportu wody w glebie – Implementacja numeryczna równania Richardsa., 2014, 85-85
  24. 2014, Modeling of soil water transport – numerical implementation of the Richards equation., 2014, 55-55
  25. 2013, Soil Water Dynamic Modeling Using the Physical and Support Vector Machine Methods, Vadose Zone Journal, 2013, doi:10.2136/vzj2013.05.0085
  26. 2013, Methodological aspects of fractal dimension estimation on the basis of particle size distribution, Vadose Zone Journal, 2013, 12(1): 1-9
  27. 2013, Comparative analysis of the organic liquid conductivity of soil samples treated with cationic surfactant, Georgikon for Agriculture, 2013, 18(3): 41-56
  28. 2013, Numerical model of the splash crown shape in single fluid system (a drop water falling on the surface of water) using the finite volume method depending on the geometry of the system, 2013, 267-267
  29. 2013, Calculation of fractal dimension of soil on the basis of particle size distribution measured with the laser diffraction method, 2013, 112-112
  30. 2013, NAPL-conductivity of CPC treated soil samples, 2013, 73-73
  31. 2013, Modelling soil water dynamics using the physical and soft-computing methods, 2013, 49-49
  32. 2013, Application of X-ray computational microtomography and modelling for estimation of the saturated water conductivity of the porous media, 2013, 9-10
  33. 2013, Numerical model of the spalsh crown shape in single fluid system (a drop of water falling on the surface of water) using the finite volume method depending in the geometry of the system, 2013, 267-267
  34. 2012, A TDR-Based Soil Moisture Monitoring System with Simultaneous Measurement of Soil Temperature and Electrical Conductivity, Sensors, 2012, 1213545-13566
  35. 2012, Impact of diverse tillage on soil moisture dynamics., International Agrophysics, 2012, 26(3): 301-309
  36. 2012, Water stable and non stable soil aggregates and their pore size distributions, 2012, 870-871
  37. 2012, Zastosowanie modeli – HYDRUS-1D oraz SVM, do przewidywania wilgotności gleby, 2012, 64-65
  38. 2012, Zaburzenia przepływu w cewniku centralnym jako przyczyna zakażenia, 2012
  39. 2011, Modelowanie procesów transportu zachodzących w systemie gleba-roślina-atmosfera, 2011, 30-30
  40. 2011, Global access to in situ soil moisture measurement, 2011, 42-42
  41. 2011, Soft-computing techniques in soil hydrological parameters modeling, 2011, 50-50
  42. 2011, Simulation of pollution flow in the soil profile under different conditions, 2011, 132-132
  43. 2010, Monitoring of soil moisture and teperature in chosen transect of Polesie National Park, Nature and landscape monitoring system in the west Polesie Region, Rozdział, 168-177 - Wydawnictwo PZN Sp. Z o.o
  44. 2009, Stosunki wodne w wybranych glebach pod wierzbą krzewiastą i ślazowcem pensylwańskim., Acta Agrophysica, 2009, 171, Vol. 14(2), 479-489
  45. 2008, Using Support Vector Machines to Develop Pedotransfer Functions for Water Retention of Soils in Poland., Soil Science Society of America Journal, 2008, Vol. 72, No 5, 53-57
  46. 2008, Aparatura pomiarowa i oprogramowanie w systemie monitorowania wilgotności, temperatury i zasolenia gleby w Poleskim Parku Narodowym., 2008
  47. 2007, Modelowe badania pola temperatury w profilu glebowym z lokalnym zaburzeniem właściwości cieplnych., Acta Agrophysica Rozprawy i Monografie PL, 2007, (154, (5), l. ark. wyd. 6,7): 1-94
  48. 2006, Relationship between van Genuchten’s parameters of the retention curie equation and physical properties of soil solid phase., International Agrophysics, 2006, 20, 2, 153-159
  49. 2005, Scientific dictionary of agrophysics., Institute of Agrophysics PAS, Lublin, 2005, str całości 1-259, l. ark. wyd. 18,5
  50. 2005, Comparison of van Genuchten’s parameters for three type of soils., Institute of Agrophyscis PAS, Lublin, "Review of Current Problems in Agrophysics", 2005, Chapter 1, Physics in Soil Science, 71
  51. 2004, Device for evaluation of rape pods cracking susceptibility, Institute of Agrophysics PAS, Lublin "Physics, Chemistry and Biogeochemistry in Soil and Plant Studies", 2004, Institute of Agrophysics PAS, Lublin "Physics, Chemistry and Biogeochemistry in Soil and Plant Studies", 120-121
  52. 2004, Determination of energetic status and evaporation from porous bodies on the base of infrared imaging, Institute of Agrophysics PAS, Lublin "Soil-Plant-Atmosphere Aeration and Environmental Problems", 2004, Institute of Agrophysics PAS, Lublin "Soil-Plant-Atmosphere Aeration and Environmental Problems, 11-117
  53. 2004, Validation and sensitivity analysis of heat transport model in soil profile, Institute of Agrophysics PAS, Lublin "Modern Physical and Physicochemical Methods and Their Applications in Agroecological Research", 2004, Institute of Agrophysics PAS, Lublin "Modern Physical and Physicochemical Methods and Their Applications in Agroecological Research", 102-109
  54. 2004, Methods and models for determination soil hydrophysical characteristics, Institute of Agrophysics PAS, Lublin "Modern Physical and Physicochemical Methods and Their Applications in Agroecological Research", 2004, Institute of Agrophysics PAS, Lublin "Modern Physical and Physicochemical Methods and Their Applications in Agroecological Research", 176-181
  55. 2003, Experimental verification of the agrophysical models., Centre of Excellence for Applied Physics in Sustainable Agriculture Agrophysics "Physicochemical and Physical Methods of Studies of Soil and Plant Materials. Theory and Practice", 27.11. - 2.12.2003, 113-124
  56. 2003, The analysis ofinfrared images to evaluate enegetic status and evaporation of agricultural porous media., 2003
  57. 2003, Aparat do oceny podatności łuszczyn rzepaku na pękanie., 2003
  58. 2002, Thermal signatures of land mines buried in mineral and organic soils modelling and experiments., Infrared Physics & Technology, 2002, 43, 303-309
  59. 2002, Zastosowanie sieci neuronowych do wyznaczania wartości parametrów krzywej retencji wody w glebie. Use of neural networks for soil water retention curve parameters approximation., Acta Agrophysica, 2002, 72, 79-88
  60. 2001, Zastosowanie algorytmów genetycznych do walidacji modeli numerycznych transportu ciepła w glebie., Acta Agrophysica, 2001, 57, 49-56
  61. 2001, Wpływ wilgotności i zagęszczenia gleby na odwzorowanie termiczne podpowierzchniowych niejednorodności typu mina., 2001
  62. 2000, Experimental verification of thermal signature model for mines buried in the sand., Problemy techniki uzbrojenia i radiolokacji, 72, 61-72, 2000
  63. 2000, Zastosowanie algorytmów genetycznych w zagadnieniach odwrotnych związanych z modelowaniem transportu energii w glebie., 2000
  64. 2000, The comparison of thermal signatures of a mine buried in mineral and organic soils., 2000
  65. 2000, Thermal signatures of a mine buried in mineral and organic soils – modelling and experiments., 2000
  66. 1999, Nieizotermiczny transport wody i soli w ośrodku glebowym: założenia modelu. Nonisotermal flow of water and salt in soil medium: model derivation., Acta Agrophysica, 1999, 22, 131-141
  67. 1999, Odwzorowania termalne wywołane niejednorodnością ośrodka glebowego., 1999
  68. 1999, Influence of water convection on the heat flow in soil., 1999
  69. 1998, Agrophysical methods of water retention control in the rural areas., International Agrophysics, 1998, 12, 4, 277-284
  70. 1998, The model of hyrological processes in soil profile., International Seminar Alleviating the Needs in Specific Rural Areas Damaged by the Summer Floods 1997, Lublin-Wrocław, 24-28.03.1998, 34-37, 1998
Top
X